Analysis is the systematic study of real and complex-valued continuous functions.
Mathematical structures in analysis. Figure: Mathematical structures in analysis, $(X, \cdots)$: (A) topological and algebraic structures; (B) set-theoretic structure. Mathematical structures in (A) and (B) are independent but can be related via $L^2_\mu$.
Course Notes on Mathematical Analysis 1&2
Notes on Mathematical Analysis 3
Real number; function; continuity; convergence; differentiation; integration.
A sequence is an ordered set of mathematical objects, $\{a_i\}_{i=1}^N$. A series is an infinite sequence of partial sums, $\{s_n\}_{n=1}^\infty$, $s_n = \sum_{i=1}^n a_i$; $a_n$ is called the $n$-th term of the series and $s_n$ is called its partial sum of order $n$. The study of series is equivalent to the study of sequences.
Course Notes on Complex Analysis
Concepts:
Handouts:
Vector calculus:
Curvilinear coordinates: