混沌广泛的存在于各种现象中: Navier-Stokes 方程定义的流体力学运动; Reynold's 湍流实验; 热对流; 长期天气预报; 种群动力学; 地震、股市、心电图.
确定的线性系统只出现简单的状态: 趋向定常态, 或趋向无穷. 不可能出现复杂的随机状态.
非线性的本质在于相互作用.
混沌侧重于确定的非线性系统的状态量随时间的不确定变化; 分型侧重于确定的非线性作用在空间形成的复杂结构.
(公式略去) 状态量 $X_n \in [0,1]$ , 系统控制参数 $\mu \in [0,4]$ .
方程的解包括定常态, 周期2, 周期4, ……, 周期 $2^n$ 解.
定常状态满足: $x=f(x)$ . 解得 $x_1^∗ = 0$ , $x_2^∗ = 1-1/\mu$ . $x_1^∗$ 的稳定区间为 $\mu \in [0,1); x_2^∗$ 的稳定区间为 $\mu \in (1,3)$ . 周期2解满足: $x_b = f(x_a), x_a = f(x_b)$ , 即 $x = f(f(x))$ . 真正的周期2解满足 $x^2 - (\mu+1)/\mu x + (\mu+1)/\mu^2 = 0$ . 稳定区间为 $\mu \in (3,1+\sqrt{6})$ 周期4, 周期8, … 周期 $2^n$ 解都有相应的稳定区间. 当 $\mu > \mu_{\infty} \ge 3.569945627$ 时, 周期趋于无穷大, 出现混沌.
Li-York 定理 (“周期3意味着混沌”): 设映射 $f:[-1,1][-1,1]$ 连续, 且f具有周期3轨道, 则f具有任意周期的轨道.
差别很小的初值在有限步“伸长”和“折叠”后, 有效信息全部丢失, 此后结果完全随机: 这就是混沌随机性的来源.
Lyapunov exponent 是 n 次迭代后初始误差的平均增长率: $LE = \lim_{n \to \infty} 1/n \ln | \delta x_n / \delta x_0 |$. 正的 Lyapunov 特征指数是混沌系统的特征, 它定量表示了初条件的敏感性.
Logistic map 是一种无特征尺度现象, 但是存在不变量.
Feigenbaum 自相似泛函方程
保守系统: 一般指能量不随时间变化的系统. 耗散系统: 指能量随时间减少的系统.
pattern 斑图: 系统的整体流形.
Silnikov 同宿轨道: 鞍点同宿轨道, 鞍-焦同宿轨道. 只要有 Silnikov 同宿轨道, 就有混沌.
自治动力系统平衡态的性质只反映平衡态附近解的性质, 是动力系统的局部性质. 在二维以上系统, 考察系统的整体性质与局部性质同样重要.
不同维度自治动力系统可能出现的最复杂的轨道:
吸引子: 动力系统长时间演化的极限状态, 即 $t \to \infty$ 时系统状态的归宿.
只有耗散系统才有吸引子, 可能存在4种吸引子:
m 维时间连续动力系统的每一个分量都可以求出相应的 Lyapunov 指数 $\text{LE}_i$ , 将这 m 个 Lyapunov 指数按大小顺序排列, 就构成了该吸引子的 Lyapunov spectrum.
正的 Lyapunov 指数是混沌吸引子的重要特征, 表示两条相邻轨道在该方向以指数形式分离. 从整体上说, 耗散系统中的驱动因素——局部伸长, 和耗散因素——折叠, 使得所有的轨道收缩到有限范围.
Table: Lyapunov spectrum by attractor
吸引子\维度 | 一维 | 二维 | 三维 |
---|---|---|---|
定常吸引子 | { - } |
{ -, - } |
{ - , - , - } |
周期吸引子 | - | { 0, - } |
{ 0 , - , - } |
拟周期吸引子 | - | - | { 0 , 0 , - } |
混沌吸引子 | - | - | { + , 0 , - } |
特征尺度: 特定现象的某一特性的一般大小, 是个统计概念.
无特征尺度现象: 自然界中一些非常复杂的现象(或几何体)具有多种尺度(或者说无特征尺度), 并且在不同的尺度上呈现不同的性质.
分形: 具有自相似结构的无特征尺度的复杂几何体. 【当然也可以用于描述函数图象, 如气候要素曲线. 】
分形是一种能够用于描述复杂现象的工具.
用尺度为 r 的尺子度量 m 维单位几何体, 测量个数为 $N(r) = 1/r^m$ .
拓扑维: 确定一个几何对象中一点的位置所需要的独立坐标数目. 【坐标用实数表示】 $d = \ln N(r) / \ln 1/r$
Hausdorff 分数维: $D_0 = \lim_{r_0} \ln N(r) / \ln 1/r$ .
分形的拓扑维 < 分形的分数维 $D_0$ < 分形所在空间维数
分形的性质随尺度变化, 但是具有不变量. 分数维就是无特征尺度系统的不变量. 【不具有自相似结构的无特征尺度系统一定有不变量么?】
Kaplan-Yorke 假设: 设初始时刻相空间内混沌吸引子附近的一个单位立方体, 经过伸长、折叠, $\tau$ 时刻的体积为 $V(\tau) = e^{(\text{LE}1 + \text{LE}_3) \tau}.$ 用边长为 $e^{\text{LE}_3 \tau}$ 的小立方体度量这个体积, 需要的小立方体的个数为 $N(r) = e^{(\text{LE}_1 + \text{LE}_3) \tau} / e^{3 \text{LE}_3 \tau}.$ 得到混沌吸引子的分数维 $D = \lim{r\to0} \ln N(r) / \n 1/r = \lim_{r\to0} (\text{LE}1 + \text{LE}_3 - 3\text{LE}_3) \tau / -\text{LE}_3\tau = 2 + \text{LE}_1 / |\text{LE}_3|$ . 类似的, 高维系统混沌吸引子的分数维为 $D = j + \sum{i=1}^j \text{LE}i / |\text{LE}{j+1}|$ , 其中 j 满足 $\sum_{i=1}^j \text{LE}i \ge 0$ , $\sum{i=1}^{j+1} \text{LE}_i < 0$ .