Below we consider the classification of linear, constant-coefficient, 2nd-order PDEs.
General form of 2nd-order PDEs with two independent variables: $$A u_{xx} + 2B u_{xy} + C u_{yy} + D u_x + E u_y + F =0$$
The coefficient matrix of the 2nd-order terms is $T = \begin{pmatrix} A & B \\ B & C \end{pmatrix}$ , with eigenvalues $\lambda_{1,2} = \frac{(A+C)\pm \sqrt{(A-C)^2+4B^2}}{2}$. Denote discriminant $\Delta = B^2 -AC$, then $-\lambda_1 \lambda_2$.
Classification:
Standard form:
General form of 2nd-order PDEs with $n$ independent variables: $$\sum_{i,j=1}^{n} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{k=1}^{n} b_k \frac{\partial u}{\partial x_k} + cu = f$$ , where all the coefficients are real.
The major part of the PDE is $$\sum_{i,j=1}^{n} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} = \left( \frac{\partial}{\partial x_1}, \cdots , \frac{\partial}{\partial x_n} \right) \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} $$
Denote the coefficient matrix as $T$, then $T$ is a real symmetric matrix. Denote the multiplicity (here the geometric multiplicity equals the algebraic ones) of positive, negative and zero (real) eigenvalues as $\alpha, \beta, \gamma$ respectively, then $\alpha +\beta +\gamma =n$.
Noticing that cases $(\alpha, \beta, \gamma)$ and $(\beta, \alpha, \gamma)$ are essentially the same, we ignore situations when $\alpha$ and $\beta$ switches.
Examples:
Coefficient matrix can be standardized into a diagonal matrix with entries $0, \pm 1$.