For any r.v. X with finite expectation and any convex function \( \varphi(\cdot) \),
\[ \mathbb{E} \varphi(X) \geq \varphi( \mathbb{E} X ) \]
Note:
Corollary 1: Arithmetic-geometric Mean Inequality
If \( p_1, \cdots, p_n \geq 0 \) and \( p_1 + \cdots + p_n = 1 \), then
\[ \sum_{i=1}^n p_i a_i \geq \prod_{i=1}^n a_i^{p_i} \]
A special case of arithmetic-geometric mean inequality is Young's inequality:
\[ x,y \geq 0, p,q>0, \frac{1}{p} + \frac{1}{q} = 1 \Rightarrow xy \leq \frac{x^p}{p} + \frac{y^q}{q} \]
Corollary 2: Likelihood Inequality
If \( X \sim p(x) \) and \( q(x) \) is another density function, then
\[ \mathbb{E} \log p(X) \geq \mathbb{E} \log q(X) ) \]
Equality holds iff \( p(x) = q(x) \).
For all \( X, g(\cdot), h(\cdot) \) s.t. \( \mathbb{E} g(X), \mathbb{E} h(X), \mathbb{E} g(X)h(X) \) exist:
If \( p,q>0, \frac{1}{p} + \frac{1}{q} = 1 \), then for all r.v. X and Y, given the expectations exist,
\[ \lvert \mathbb{E} XY \rvert \leq \left( \mathbb{E} \lvert X \rvert^p \right)^{\frac{1}{p}} \left( \mathbb{E} \lvert Y \rvert^q \right)^{\frac{1}{q}} \]
Derivation: Using Young's inequality, \( \frac{ \lvert X \rvert }{ \left( \mathbb{E} \lvert X \rvert^p \right)^{\frac{1}{p}} } \frac{ \lvert Y \rvert }{ \left( \mathbb{E} \lvert Y \rvert^q \right)^{\frac{1}{q}} } \leq \frac{ \lvert X \rvert^p }{ p \mathbb{E} \lvert X \rvert^p } + \frac{ \lvert Y \rvert^q }{ q \mathbb{E} \lvert Y \rvert^q } \). Holder's inequality can be derived by taking expectation on both sides.
Corollary: Cauchy-Schwarz Inequality
For all r.v. X and Y, given the expectations exist,
\[ \lvert \mathbb{E} XY \rvert \leq \left( \mathbb{E} \lvert X \rvert^2 \right)^{\frac{1}{2}} \left( \mathbb{E} \lvert Y \rvert^2 \right)^{\frac{1}{2}} \]
For any positive r.v. X and \( r>0 \),
\[ P(X \geq r) \leq \frac{\mathbb{E} X}{r} \]
Corollary:
Bernstein inequality (exponential version for bounded r.v.'s): Suppose that \(|X| \le M\) almost surely, then for all \(\epsilon > 0\)
\[ P(|\bar{X} - \mu| \ge \epsilon ) \le 2\exp \left( -\frac{n\epsilon^2/2}{\sigma^2 + M\epsilon/3} \right) \]
Some properties of Gamma, Chi-squared, Poisson and negative binomial distribution.