Introduction to numerical analysis
Numerical error: truncation, round off, error propagation,
Numerical linear algebra (NLA).
Classical methods:
Matrix norm, condition number, error estimation.
Krylov subspace methods: (symmetric Lanczos process + LDLt factorization + clever recursions)
Krylov subspace methods are successful only if they can be effectively preconditioned.
Notes: 用高斯消元法求解时,比较计算后和计算前的主对角元,比值越小、解的精度就少多少(?) (Using double precision floating point number) 系数矩阵条件数在百亿量级(1e10)时, 解的精度大概只有1e-3或1e-4。——陈璞
Efficient updates in NLA:
Merit function for solving nonlinear equations is a scalar-valued function that indicates whether a new iterate is better or worse than the current iterate, in the sense of making progress toward a root. Merit functions are often obtained by combining the components of the vector field in some way, e.g. the sum of squares; all of which have some drawbacks.
Line search and trust-region techniques play an equally important role in optimization, but one can argue that trust-region algorithms have certain theoretical advantages in solving nonlinear equations.
Types of function approximation:
Least squares solution of over-determined systems of equations. [@Golub2013, Ch. 5]
QR decomposition (for an m-by-n matrix A):
Householder matrix, Householder reflection, or Householder transformation is a matrix of the form: $P = I - \beta v v^T$, where Householder vector $v$ is non-zero and $\beta = 2 / |v|^2$. When applied to a vector, $P x$ is the reflection of $x$ in the hyperplane orthogonal to $v$.
Matrix decomposition or matrix factorization is a factorization of a matrix into a product of (typically two or three) matrices.
QR decomposition with pivoting $A \Pi = Q [R; 0]$
Numerical rank of a matrix given a threshold $\tau$ is its smallest rank under perturbations of spectral norm no greater than the threshold: $k_\tau = \min_{|E|_2 \le \tau} \text{rank}(A+E)$. The numerical rank equals the number of singular values greater than the threshold.
[@Hogben2013, Sections 52.9] Rank revealing decomposition is a two-sided orthogonal decomposition of the form: $A = U [R; 0] V^T$, where $U \in O(m)$, $V \in O(n)$, $R$ is upper triangular, and small singular values of A are revealed by correspondingly small diagonal entries of $R$. Examples of rank revealing decompositions include RRQR, and UTV (URV or ULV) decompositions. Rank revealing QR (RRQR) decomposition is a pivoted QR decomposition such that for all leading principal submatrices $R_i$, the following interlacing inequalities hold: $c_i^{-1} \sigma_i(A) \le \sigma_i(R_i) \le \sigma_i(A) \le \sigma_1(R_i) \le c_i \sigma_i(A)$, where $c_i^2 = i (n - i) + \min(i, n-i)$. RRQR factorization is not unique. URV decomposition is a rank revealing decomposition $A = U [R; 0] V^T$ such that for all $k \in {1, \cdots, n}$ and for all $i \le k < j$, leading principal submatrices $R_i$ and trailing principal submatrices $R_{-k}$ (rows and columns from $k+1$ to $n$) satisfy the following sandwich inequalities: $\breve{c}_k \sigma_i(A) \le \sigma_i(R_i) \le \sigma_i(A)$ and $\sigma_j(A) \le \sigma_{j-k}(R_{-k}) \le \breve{c}_k^{-1} \sigma_j(A)$, where $\breve{c}_k^2 = 1 - \sigma_1^2(R_{-k}) / (\sigma_k^2(R_k) - \sigma_1^2(R_{-k}))$. ULV decomposition is similar to URV, but with a lower triangular matrix.