System

Linear Time/Translation Invariant (LTI) Operators (Chap.

22.1)

  1. e-function: $\tilde{e}_f(t) = e^{i2\pi ft}$
  2. $G(f) = \mathcal{F}{ g(t) }$
  3. stable: bounded input produces bounded output
  4. Given $\mathbb{H}$ is LTI. Stable is equivalent to $h(t)$ absolutely integrable.
  5. Given $\mathbb{H}$ is LTI. Causal is equivalent to $h(t)=0, \forall t<0$.

Circulant Matrix

e-functions and DFT

Characterization


🏷 Category=Probability