CE541A DYNAMICS OF STRUCTURES

RUDA ZHANG

1. SINGLE-DEGREE-OF-FREEDOM SYSTEMS

Glossary:

SDOF: single degree of freedom

MDOF: multiple degree of freedom
Motivation for studying SDOF systems:

e Some systems are nearly 1DOF;

e First mode is dominant;

¢ By model decoupling,

MDOF < SDOF,

3

1.1. Integral transformation. Some problems are easier to do in transform do-
main.
Common integral transformations:

e Laplace transformation;
e Inverse Laplace transformation;
e Convolution integral.

Generalized vibration problem:

Excitation N System characteristic . Response
F(t) G(t) x(t)
Here G(t) is a differential operator:
d2

, and they are interrelated as:
Gt)xz(t) = F(t)

Generalized vibration problem after integral transformation:

Transformed Transfer Transformed
excitation — function — response
F(s) G(s) Z(s)
Here G(s) is an algebraic expression:
1
G = —————
() ms2 +cs+k
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and .
3(s) = L{a(t)) = /O et dt
Fls) = L{F(t)} = /0 T estR dt
They are interrelated as':
(1) Z(s) = G(s)F(s)

Definition 1. Generalized impedance of system is

Y(s) = %(S)
1.2. Classification of Structural Dynamics Problems.
Classification F(s) G(s) z(s)
Analysis Vv Vv ?
Instrumentation ? Vv vV
Synthesis/Identification 4/ ? vV

Analysis: given excitation and system, determine response.
Instrumentation: response and system characteristics known, find excita-
tion.
Synthesis/Identification: given the excitation and response, determine sys-
tem characteristics. (Solution is not unique.)
Application:
e Optimum design
e Structural health monitoring, a.k.a. SHM

1.3. Indicial response and impulsive response.

Definition 3. Indicial response g(t) is the response of a system with zero initial
condition (1.C.) to a unit step function u(t) applied at t = 0.

From equation 1, we have

L{g(t)} = G(s)L{u(t)}

Since L{u(t)} = %, indicial response is

@) ot = e { £

s
Definition 4. Impulsive response h(t) is the response of a system at rest to a

unit impulse 0(t) applied at t = 0.

1G(s) represents steady-state response per unit sinusoidal input as a function of excitation
frequency.
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Since £{d(t)} = 1, impulsive response is
(3) h(t) = L7{G(s)}

Relationship between indicial and impulsive response

Since
£ {450} = sy(s) - 9(0)
= G(s) — 9(0)
= L£{h(t)} - 9(0)
, hence
(@) () = Y0 4 gopacn)

That means, displacement response of a linear system to a unit impulse equals to
its velocity response to a unit step load.

Indicial response of a linear damped SDOF system
The equation of motion is:

mi+ckt+kr=1 (t>0)
, with I.C.
z(0) = (0) =0
General solution to this equation is
—cC 1
z(t) = Cezn’ cos(wgt — ) + z
Using 1.C.,

{C’cosa—i—}c:O

C’(Q—Wicosa—i—wdsina) =0

Let ¢ = sina, we have

5) (= ——

So, the indicial response is

(9) g(t) = % [1 - \/11_7C26_2:nt cos(wgt — a)}
(10) g (t) = — e~ Tt sin(wyt)

ky/1-C2
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Impulsive response of a linear damped SDOF system
The equation of motion is:

mi+ct+kxr=0 (t>0)

{ﬂmzo
#(0) = &

General solution to this equation is

, with I.C.

z(t) = Ceznt cos(wat — )

, where
k c2
wd m  4m?2
Using 1.C.,
Ccosa=0
C (35S cosa+wgsina) = -
we have
e
C= m}ud
The impulsive response is
w

(11) h(t) =

‘We can see that

1.4. Duhamels Integral (convolution integral). Suppose the indicial response
of a linear system is g(t), regard a random excitation f(t) as a superposition of
infinitely many step functions. The differential change in response caused by the
step function applied at time 7 is

dz(t) =df(r) gt — )
So the response is
w@=f@ﬁﬂ+£f%wﬁ—ﬂd7

Isn’t g(0) = 07 Through integration by parts,

w@=f@ﬂ®+£g%—ﬂﬂﬂd7

Using differentiation under the integral sign,

(12) o) = 5 [ ate=nre ar
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Or from equation 4, we get?

(13) z(t) = /0 h(t —7)f(7) dr

Limitations of convolution integral:
e System must be linear;
e Excitation f(¢) defined only for ¢ > 0.

1.5. General solution for forced vibration of a damped system. Using con-
volution integral and impulsive response of a linear damped SDOF system, the
solution with zero 1.C. is

z(t) = /Ot k\/%iee

With I.C. z(0) = x, #(0) = &, the complementary solution is

2w T sinwg(t — 1) F(7) dr

c 3 T
2(t) = e 2t (2 cos wat + o + wo sin wqt)
Wd
The complete solution then becomes:
14) z(t) = e 3t (0 coswyt + o + cwzo sin wqt)+
w
d

/Ot W%e_ﬁ(t_ﬂ sinwg(t —7) F(r) dr
1.6. Complex number representation of SDOF. Suppose the equation of mo-
tion is:

(15) mi + ci + kx = Fy coswt

Using knowledge of complex number, it can be rewritten as:

(16) mi + ci + kx = Fye™*
, with I.C.

z(0) =z

#(0) = @

Suppose a particular solution is ae??, then write the general solution as super-
position of homogeneous solution and the particular solution, we have:

(17) z(t) = Aestt + Age®2! + ae™!

Definition 5. Frequency ratio
w

r
Wn

The excited amplitude is

F 1 F ~
(18) R G =) S Vo) = Z [HrOle™™

, where
1

VPP @)

2This formula can also be derived from the other point of view: regarding excitation as a
superposition of infinitely many impulse.

|H(7’,C)| =
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_ 2r
(p = arctan 1-,2

Define
(19) 2(s) =ms® +es+ k
Let z(s) = 0, we get the roots as:
20) mZ{@;iimw (0<¢<1)
’ —Cwt/CZ—-1lw ((>1)

Their respective complex amplitude is

(21) (i;) = (sll 512> h (:bﬁﬁ&)

The following are some terms used in “modal analysis”.

Definition 6. Receptance is the ratio of steady state displacement to excitation.?
x| _ ssdisp
f1  excitation

Definition 7. A Nyquist plot is a parametric plot of receptance [ﬂ with respect
to frequency ratio r.

z

!

frequency ratios r1,r9 that correspond to % max

occurs at r = /1 —2(2. Then

z

f

Definition 8. For light damped system, max

are called (lower and upper)

half power points.

Definition 9. Bandwidth is defined as the frequency difference between the lower
and upper half power points.
Aw = wy —wy

1.7. Application of Complex Number Representation. For a vehicle travel-
ing on a rough road.
Height of road is:

2w
= A in ——
y(x) sin —
Horizontal position of vehicle is:
x(t) = vt
Then
y(t) = Asin Q¢
, with
_ 2mv
L

Denote z as the vertical position of vehicle, the equation of motion is:

m = —k(z — y) — c(z — §)

3Note that in our case,

{ﬂ N Fo - z(im
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Write y(t) as

y(t) = Ae’
Then excitation can be written as
f(t) =ky+cy
= A(k + iQc)e™?
= Ak[1 +4(2¢r)]e™ ™
— Fyel@tte)

, with
a = arctan(2(r)
{FO = Aky/1 ¥ (20
Now the equation of motion can be written as:
m3 + ci + kz = Fye'(¥tte)

The steady state solution of the equation is

Zes (t) _ Fy 1 6i(Qt+a7ﬂ9)

IERV(OETD Rk

_ i(Qt+a—yp)
= zp€

, with peak steady state motion
A1+ (2¢r)?
VI—P =2

Zp =

Force transmitted to vehicle is
Fr=—-mZ
— (mQ2Zp)ei(Qt+a—ga)

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING, UNIVERSITY OF SOUTHERN CALI-
FORNIA, LOS ANGELES, CA 90089-2531
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FI1GURE 1. Peak Steady State Motion Relative to Input Amplitude
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