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Chapter 0

Introduction

0.1 References

1. J. W. Thomas. Numerical Partial Differential Equation: Finite Dif-
ference Methods. Springer, 1995.

2. John C. Strikwerda. Finite Difference Schemes and Partial Differen-
tial Equations. Wadsworth, 1989.

3. R. Leveque. Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press, 2002.

4. D. Braess. Finite Elements, 2nd ed. Cambridge University Press,
1997.

0.2 Scientific Computing

• Hardware computer science and engineering

• Software supercomputing

• Physical science

• Engineering science

• Mathematics

0.2.1 Scheme/Algorithm b/t Art and Science

• Design

• Analysis: from art to science

• Experimentation

1



2 CHAPTER 0. INTRODUCTION

0.2.2 Goals

• Understanding scheme

• Analyzing scheme

• Appreciating scheme

This course will not be a comprehensive exposure of all aspects. Instead,
we aim at providing a flavor of analysis and an overview of general issues.
A standing point for your scientific career with computation.

0.3 Prerequisites

• Computer Language: Matlab, Fortran, C

• Mathematics: PDE, application and analysis, or equivalent

0.4 Syllabus

• Finite difference method: parabolic equations (4weeks)

• Finite volume method: hyperbolic equations (4–5weeks)

• Finite element method: parabolic equations (4weeks)

• Special topics: spectral method, multiscale method (2–3weeks)

Difficulties: no general quantitative PDE theory, therefore schemes are
problem-dependent.

0.5 Grading

• Attendance

• Assignment: submitted every two weeks including analysis and pro-
gram

• Final

Office hours: by appointment.



Chapter 1

Finite Difference Method for
Parabolic Equations

1.1 Parabolic Equations—An Overview

The understanding of the underlying equations is crucial for the design and
analysis for schemes. Here we briefly discuss the basic features of parabolic
equations.

1.1.1 Heat Equation—A Linear Example

Let a function u(t, x) be the temperature of an object. We have the heat
equation

ut = buxx. (1.1)

Different boundary conditions may be imposed.

• Cauchy problem (IVP: Initial-Value-Problem) Consider (1.1) in (x, t) ∈
R× R+.

u(0, x) = u0(x) (1.2)

• IBVP (Initial-Boundary-Value-Problem) Consider (1.1) in (x, t) ∈
[a, b]× R+. Initial condition is

u(0, x) = u0(x). (1.3)

Boundary conditions are

u(t, a) = ua(t), u(t, b) = ub(t) (Dirichlet boundary condition) (1.4)

or

ux(t, a) = 0, ux(t, b) = 0 (Neumann boundary condition) (1.5)

3



4 CHAPTER 1. FINITE DIFFERENCE METHOD

Fourier transform is an indispensable tool for studying linear partial
differential equations. Regarding t as a parameter, we define

F(u(t, x)) = û(t, ω) =
1√
2π

∫ +∞

−∞
u(t, x)e−iωxdx. (1.6)

The function in physical space may be obtained by an inverse Fourier trans-
form.

u(t, x) = F−1(û(t, ω)) =
1√
2π

∫ +∞

−∞
û(t, ω)eiωxdω. (1.7)

An important property of the Fourier transform is the Parseval’s rela-
tion. ∫ +∞

−∞
|u(t, x)|2dx =

∫ +∞

−∞
|û(t, ω)|2dω. (1.8)

Therefore, the Fourier transform F : L2 −→ L2 defines an isometry

∥ u(t, x)2 ∥2=∥ û(t, ω)2 ∥2 . (1.9)

The Fourier transform is a linear operator. It commutes with the time
differentiation operator.

F(ut) =
∂

∂t
û. (1.10)

For the spatial differentiation, we compute

F(ux) =
1√
2π

∫ +∞

−∞
uxe

−iωxdx

=
1√
2π

∫ +∞

−∞
e−iωxdu

=
1√
2π

(ue−iωx |+∞
−∞ +iω

∫ +∞

−∞
ue−iωxdx)

=
iω√
2π

∫ +∞

−∞
ue−iωxdx

= iωû.

(1.11)

We should note that in equations (1.10) and (1.11), the interchange the
order of differentiation and integral requires u(t, x) to be “good” enough.

In the wave-number (spectral) space, the heat equation is transformed
into {

∂

∂t
û = −bω2û,

û(0, ω) = û0(ω).
(1.12)
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At each wave-number k, we have the solution û(t, ω) = û0e
−bω2t, while the

dispersion relation gives λ = −bω2. Therefore, we compute

u(t, x) = F−1(û(t, ω))

=
1√
2π

∫ +∞

−∞
eiωxe−bω2t[

1√
2π

∫ +∞

−∞
e−iωyu0(y)dy]dω

=
1

2
√
π

∫ +∞

−∞
(
1√
π

∫ +∞

−∞
eiω(x−y)e−bω2tdω)u0(y)dy

=
1

2
√
πbt

∫ +∞

−∞
e−

(x−y)2

4bt u0(y)dy

(1.13)

In this expression, the term e−
(x−y)2

4bt in (1.13) equation is the heat kernel.
This expression implies a “smoothing” effect of the heat diffusion, as well as
the regularity of the solution. Actually, because the term e−bω2

dominates
as ω → +∞, we find that

∂l+mu(t, x)

∂tl∂xm
=

1√
2π

∫ +∞

−∞
eiωx(iω)m(−bω2)le−bω2

û0(ω)dω. (1.14)

An extension of the heat equation is an advection-diffusion equation.
It reads

ut + aux = buxx. (1.15)

We make a change of variable.

w(t, y) = u(t, y + at). (1.16)

Then we get

wt = ut + aux, (1.17)

wy = ux, (1.18)

wyy = uxx. (1.19)

The convection-diffusion equation (1.15) is transformed into the heat equa-
tion.

wt = bwyy. (1.20)

We observe that (1.15) includes two mechanisms, namely, an advection at
a constant speed a (to the left when a > 0), and a “smoothing ”mechanism
due to diffusion.

1.1.2 Nonlinear Parabolic Equation

The Burgers’ equation is an example for nonlinear parabolic equation.

ut + uux = buxx. (1.21)
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secant line

t

u(x, t)

t+∆t

u(x, t+∆t)

tangent line

Figure 1.1: Derivative and difference

Using the Cole-Hopf transform

u = −2b
φx

φ
, (1.22)

we obtain a heat equation
φt = bφxx. (1.23)

1.2 Introduction to Finite Difference Method

Heuristically, the finite difference method comes naturally from the defini-
tion of derivatives as a limit of the quotient of differences, as shown in Figure
1.1

∂u

∂t
(t, x) = lim

∆t→0

u(t+∆t, x)− u(t, x)

∆t
. (1.24)

∂u

∂x
(t, x) = lim

∆x→0

u(t, x+∆x)− u(t, x)

∆x
. (1.25)

A finite difference method includes the following basic ingredients.

• Grid: domain discretization (see Figure 1.2).

{
Time: 0 = t0 < t1 < t2 < · · · < tn < · · · < tN = T ;
Space: a = x0 < x1 < x2 < · · · < xm < · · · < xN = b.

(1.26)
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t

x

Figure 1.2: Schematic view of the grid.

In particular, for a uniform grid, we have{
tn = n∆t

xm = a+m∆x
(1.27)

Later on, we shall use the notations k = ∆t, h = ∆x.

• In numerical computations, we work with a finite set of numerical
values. Typically, though not necessarily, we relate them with the
values of the continuous function u(x, t) at the grid points.

unm ≈ u(tn, xm). (1.28)

• Initial data is typically assigned from the continuous initial condition.

u0m = u(0, xm). (1.29)

Treatment of boundary data is more complex, and we defer the dis-
cussions later.

• The numerical solution is obtained from a scheme, that is, a formula
to derive numerical values at a higher (later) time level from previ-
ous ones. The goal of the scheme is to approximate the continuous
solution properly, i.e. unm → u(tn, xm). The meaning of the limit will
be precisely defined later. The major task of scientific computing or
numerical analysis is to design and to analyze schemes.
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The design of a scheme starts with numerical derivatives. But from
a derivative, there are many different ways to approximate. For temporal
derivative, we may take either of the following approximations.

∂u

∂t
(tn, xm)

≈ u(tn+1, xm)− u(tn, xm)

k
→ un+1

m − unm
k

or
u(tn, xm)− u(tn−1, xm)

k
→ unm − un−1

m

k

or
u(tn+1, xm)− u(tn,xm−1)+u(tn,xm+1)

2

k
→

un+1
m − un

m+1+un
m−1

2

k

or
u(tn+1, xm)− u(tn−1, xm)

2k
→ un+1

m − un−1
m

2k
.

(1.30)

The spatial derivative also has several possibilities.

∂u

∂x
(tn, xm)

≈u(t
n, xm+1)− u(tn, xm−1)

2h
→

unm+1 − un−1
m

2h
≡ Dcu

n
m central difference

or
u(tn, xm+1)− u(tn, xm)

h
→

unm+1 − un−1
m

h
≡ D+u

n
m forward difference

or
u(tn, xm)− u(tn, xm−1)

h
→

unm − unm−1

h
≡ D−u

n
m backward difference.

(1.31)

The second order derivative may be approximated by a combination
of first order derivatives, see Figure 1.3. For instance, a second order of
central difference may be obtained by combining a forward difference and a
backward difference.

uxx(t
n, xm)

≈ux(t
n, xm+1)− ux(t

n, xm)

h
forward

≈
u(tn,xm+1)−u(tn,xm)

h − u(tn,xm)−u(tn,xm−1)
h

h
backward

=
u(tn, xm+1)− 2u(tn, xm) + u(tn, xm−1)

h2

→
unm+1 − 2unm + unm−1

h2

=D+D−u
n
m.

(1.32)

Similarly, we may approximate the second order derivative by two for-
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xm−1 xm xm+1

tn

tn+1

xm+1xm xm+2

Figure 1.3: Central and one-sided difference for second order spatial
derivative.

ward differences.

uxx(t
n, xm) ≈ D+D+u

n
m

=
u(tn,xm+2)−u(tn,xm+1)

h − u(tn,xm+1)−u(tn,xm)
h

h

→
unm+2 − 2unm+1 + unm

h2
.

(1.33)

1.3 Basic Properties of a Finite Difference Scheme

For a difference scheme, we analyze how good it is by mainly three or four
properties, namely, accuracy and consistency, stability and convergence.

1.3.1 Accuracy and Consistency: Taylor Expansion

In a finite difference scheme, we approximate continuous derivatives by d-
ifferences. In turn, we may study the error of the differences by Taylor
expansion. For instance, uxx is approximated by (1.34) and (1.35). It may
be calculated that, if expanded at (tn, xm),

u(tn, xm+1)− 2u(tn, xm) + u(tn, xm−1)

h2

=
1

h2
[u(tn, xm) + hux(t

n, xm) +
h2

2
uxx(t

n, xm) +
h3

6
uxxx(t

n, xm)

+
h4

24
uxxxx(t

n, xm)− 2u(tn, xm) + u(tn, xm)− hux(t
n, xm)

+
h2

2
uxx(t

n, xm)− h3

6
uxxx(t

n, xm) +
h4

24
uxxxx(t

n, xm) +O(h5)]

=uxx(t
n, xm) +

h2

12
uxxxx(t

n, xm) +O(h3).

(1.34)
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In contrast, another difference form yields

u(tn, xm+2)− 2u(tn, xm+1) + u(tn, xm)

h2

=
1

h2
[u(tn, xm) + 2hux(t

n, xm) +
4h2

2
uxx(t

n, xm)

+
8h3

6
uxxx(t

n, xm) +O(h4)− 2(u(tn, xm) + hux(t
n, xm)

+
h2

2
uxx(t

n, xm) +
h3

6
uxxx(t

n, xm) +O(h4)) + u(tn, xm)]

=uxx(t
n, xm) + huxxx(t

n, xm) +O(h2).

(1.35)

Nevertheless, both difference forms approximate the continuous deriva-
tive in the limit h→ 0. A similar argument applies to the temporal deriva-
tive. Based on these expansions, consistency and order of accuracy are
defined as follows.

Definition 1.1 (Consistency). Given a partial differential equation Pu = f
and a finite difference scheme Pk,hv = f , we say that the finite difference
scheme is consistent with the partial differential equation, if for any smooth
function ϕ(t, x), it holds that

Pϕ− Pk,hϕ→ 0 as k, h→ 0. (1.36)

Here the convergence is point-wise at each grid point.

Definition 1.2 (Truncation error, order of accuracy). A scheme Pk,hv =
Pu = f , which is consistent with the partial differential equation Pu = f ,
is accurate of order p in time, and of order q in space if ∀φ(t, x) smooth, it
holds that

Pk,hφ−Rk,hf = O(kp, hq). (1.37)

The above term is called truncation error. We denote this scheme accurate
of order (p, q). If k = Λ(h) is a smooth function, we say that the scheme
Pk,hv = Rk,hf is accurate of order r if ∀φ(t, λ) smooth, it holds that

Pk,hφ−Rk,hf = O(hr). (1.38)

Consider the explicit one-sided difference scheme for the heat equation.

un+1
m − unm

k
= b

unm−2 − 2unm−1 + unm
h2

. (1.39)

It is straightforward to find that the truncation error is

un+1
m − unm

k
−b

unm−2 − 2unm−1 + unm
h2

= ut+
kutt
2

+O(k2)−buxx+bhuxxx+O(h2).

(1.40)
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Therefore, this scheme is accurate of the order (1, 1). Moreover, actually
the numerical scheme approximates better the following equation, which is
called as the modified equation for the scheme 1.55.

ut +
kutt
2

− buxx + bhuxxx = 0. (1.41)

1.3.2 Basic Property of a Scheme: To Solve a Partial
Differential Equation

Consistency and order of accuracy are local properties of a finite difference
scheme. Other basic properties include convergence and stability, which are
global properties.

Definition 1.3 (Convergence). A “one step” finite difference scheme ap-
proximating a partial differential equation is a convergent scheme, if for any
exact solution u(t, x) to the partial differential equation and numerical solu-
tion unm with the finite difference scheme, such that u0m converges to u0(x)
as mh→ x, then

unm → u(t, x) as (nk,mh) → (t, x) and h, k → 0. (1.42)

Remark 1.1. The “convergence” will be precisely described later, usually
not point-wise.

Remark 1.2. Convergence is usually not a simple issue. We need to define
in a certain sense,

∥ u(nk,mh)− unm ∥→ 0. (1.43)

This involves

1. Explicit solution of the partial differential equation

2. Explicit solution of the FD scheme

To fix the first issue, we define an “L2” norm for the grid function as
follows.

∥ u(tn, ·) ∥2,h= (h

∞∑
m=−∞

(unm)2)
1
2 . (1.44)

For the second issue, however, we do not have a way to treat at this
point.

There is another important property for a numerical scheme, that is
stability. This concern arises naturally in the following manner. Let a
numerical solution {ũnm} obtained with initial data {ũ0m}, and another nu-
merical solution {ūnm} with initial data {ū0m}. Under the condition that
∥ ũ0m − ū0m ∥ is small, do we have ∥ ũnm − ūnm ∥ small? If stability does not
hold for a numerical scheme, then the scheme is useless as a small pertur-
bation will cause totally different numerical solutions. We notice that there
are uncertainties in numerical computations, such as round-off error.
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0 Π

Ω0

2 Π

Ω0

3 Π

Ω0

4 Π

Ω0

Figure 1.4: Schematic view of wave-number and gridpoint.

Definition 1.4 (Stability). A finite difference scheme Pk,hu
n
m = 0 for a first

order (in time) equation is stable if ∃J ∈ N and h0, k0 > 0, ∀T > 0, ∃CT ,
such that ∀h < h0, k < k0, and t < T ,

∥un∥h ≤ CT

J∑
j=0

∥uj∥h. (1.45)

Related to the stability for a numerical scheme, the stability for the
partial differential equation should hold in the first place.

Definition 1.5. A first order (in time) partial differential equation is well-
posed if ∀T > 0, ∃CT , such that for any solution u(t, x), it holds that ∀t < T ,

∥ u(t, ·) ∥≤ CT ∥ u(0, ·) ∥ . (1.46)

Example 1.1. The heat equation ut = buxx (b ≥ 0) is well-posed.

In fact, we use the Fourier transform to deduce

∥ u(t, ·) ∥2 =∥ û(t, ·) ∥2

=∥ û(0, ·)e−bω2t ∥2

≤∥ û(0, ·) ∥2 .
(1.47)

The well-posedness is evident.

Example 1.2. The inverse heat equation ut = −buxx (b > 0) is ill-posed.

In fact, we follow the previous computations for the heat equation to
obtain

∥ u(t, ·) ∥2=∥ û(0, ·)e+bω2t ∥2 . (1.48)
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ωω0

λ

Figure 1.5: Dispersion relation for (1.50).

Then, ∀T > 0, ∀CT > 0 and ∀t > 0,there always exists an ω0 big enough,
such that ebω

2
0t > 2CT , and hence for an initial data with ω close to ω0, and

then
∥ u(t, ·) ∥2> C2

T ∥ û(0, ·) ∥2 . (1.49)

We make the following remarks.

• If the partial differential equation is ill-posed, then numerical stability
is not possible in general.

• Ill-posed partial differential equation needs special function spaces to
work on. The scheme should be designed in a special way as well.

• A well-posed partial differential equation does not necessarily requires
negative dispersion relation for all frequencies.

• Numerically,the space grid should be fine enough to resolve those wave
numbers for which the evolution is not negligible, i.e., h < π/ω0. Con-
sider a solution u(t, x) ≃

∑
ω û(t, ω)e

λt+iωx. Accordingly, it holds that
∥ u(t, x) ∥2=

∑
ω ∥ û(0, ω)eλt ∥2. If h > π/ω0, then ∥ unm(t, x) ∥2 can

not resolve the temporal increasing term for ω < π/h, see Figure 1.4.

For instance, we consider the following advection-diffusion equation.

Example 1.3.
ut = au+ buxx a, b > 0. (1.50)

The dispersion relation gives λ = a− bω2, as shown in Figure 1.5. For
ω < ω0 =

√
a
b , we may find that λ > 0. In contrast, we find that λ < 0 for

ω > ω0.
We motivate the stability analysis from the following specific scheme.

A three-point explicit scheme

un+1
m = αunm−1 + βunm + γunm+1, (1.51)
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is stable if and only if

|α|+ |β|+ |γ| ≤ 1. (1.52)

Proof. (Sufficiency) We prove the stability condition by direct calculations.∑
m

|un+1
m |2

=
∑
m

|αunm−1 + βunm + γunm+1|2

≤
∑

α2(unm−1)
2 + β2(unm)2 + γ2(unm+1)

2

+ 2|αβ||unm−1u
n
m|+ 2|βγ||unmunm+1|+ 2|αγ||unm−1u

n
m+1|

≤
∑
m

α2(unm−1)
2 + β2(unm)2 + γ2(unm+1)

2

+ |αβ|((unm−1)
2 + (unm)2) + |βγ|((unm)2 + (unm+1)

2)

+ |αγ|((unm−1)
2 + (unm+1)

2)

=(α2 + β2 + γ2 + 2|αβ|+ 2|βγ|+ 2|αγ|)
∑
m

(unm)2

=(|α|+ |β|+ |γ|)2
∑
m

(unm)2

≤(|α|+ |β|+ |γ|)2n
∑
m

(u0m)2.

(1.53)

We apply this condition to the explicit central-difference scheme

un+1
m − unm

k
= b

unm−1 − 2unm + unm+1

h2
. (1.54)

Let µ = k/h2. This scheme may be recast into

un+1
m = bµunm−1 + (1− 2bµ)unm + bµunm+1. (1.55)

The stability reads

|α|+ |β|+ |γ| = 2bµ+ |1− 2bµ|. (1.56)

If 1 − 2bµ ≥ 0, i.e., k ≤ h2/2b, then |α| + |β| + |γ| = 1, and the scheme is
stable. It is important to note that the time step size is on the order of the
space grid size squared.
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1.4 Von Neumann Analysis

A systematic way to study numerical stability is the von Neumann analysis.
The basic tool that facilitates the von Neumann analysis is the discrete
Fourier transform.

F {unm} = ûn(ξ) =
1√
2π

∑
m

e−imhξunmh, ξ ∈ [−π
h
,
π

h
]. (1.57)

The inverse discrete Fourier transform is

unm = F−1{ûn(ξ)} =
1√
2π

∫ π
h

−π
h

eimhξûn(ξ)dξ. (1.58)

It is evident that the discrete Fourier transform may be regarded as a special
case of the Fourier transform, for which the wave number is restricted to
[−π/h, π/h].

The Parseval’s relation now reads

∥ ûn ∥h≡

√∫ π
h

−π
h

|ûn(ξ)|2dξ =∥ un ∥h . (1.59)

We consider the explicit central difference scheme (1.55). Applying the
discrete Fourier transform to both sides, we obtain

1√
2π

∫ π
h

−π
h

eimhξûn+1(ξ)dξ

=
1√
2π

∫ π
h

−π
h

eimhξ[(1− 2bµ)ûn(ξ)

+ bµ(ei(m−1)hξûn(ξ) + ei(m+1)hξûn(ξ))]dξ

=
1√
2π

∫ π
h

−π
h

eimhξ[(1− 2bµ) + bµ(e−ihξ + eihξ)]ûn(ξ)dξ.

(1.60)

As the Fourier modes are linearly independent, we have for any ξ ∈ [−π/h, π/h]
that

ûn+1(ξ) = [(1− 2bµ) + bµ(e−ihξ + eihξ)]ûn(ξ). (1.61)

This naturally identifies an important notion in the numerical stability anal-
ysis.

Definition 1.6 (Amplification factor). For a Fourier mode unm = Uneinhξ,
the ratio between the amplitude at tn+1 and that at tn from a numerical
scheme defines an amplification factor g(θ, k, h) with θ = hξ.
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For instance, the amplification factor for the explicit central difference
scheme is

g(hξ) = (1− 2bµ) + bµ(e−ihξ + eihξ). (1.62)

The meaning for the amplification factor is straightforward. If initial
data consists of a single mode, numerically it evolves according to û(nk) =
(g(θ, h, k))nû(0).

There is a very useful theorem, which allows stability analysis through
the amplification factor.

Theorem 1.1. A one-step finite difference scheme is stable if and only if
∃K, independent of θ, k, h, and h0, k0 > 0, such that |g(θ, k, h)| ≤ 1 + Kk
for any θ, 0 < k ≤ k0, 0 < h ≤ h0. If further g(θ, k, h) is independent of
h, k, then the stability condition is |g(θ)| ≤ 1.

Before prove this theorem, we first present the following corollary.

Corollary 1.1. If a finite scheme is modified in a certain manner such that
only an O(k) modification uniformly in ξ is introduced, then the modified
scheme is stable provided that the original one is so.

Proof. Let the amplification factor for the new scheme is g
′
= g + O(k). If

|g| ≤ 1 +Kk, then |g′ | = |g +O(k)| ≤ 1 +Kk + V k = 1 +K
′
k.

We remark that g
′
= g +O(k) is sufficient and necessary.

Next, we prove the theorem.

Proof. (1) (Sufficiency). For the n-th time step, we know that nk ≤ T . We
estimate

∥ un ∥2h =

∫ π
h

−π
h

|g(θ, k, h)|2n|û0(ξ)|2dξ

≤ (1 +Kk)2n ∥ u0 ∥2h
≤ (1 +Kk)2T/k ∥ u0 ∥2h
≤ e2KT ∥ u0 ∥2h .

(1.63)

Therefore, the scheme is stable.

(2) (Necessity) The necessity is shown by contradiction.

Assume that for ∀C > 0, h0 > 0, k0 > 0, ∃θ∗ ∈ [0, π], and ∃h ∈
(0, h0], ∃k ∈ (0, k0] such that |g(θ∗, k, h)| ≥ 1 + 2Ck. Due to the continuity
of g(ξ, h, k), there exists an interval [θ1, θ2], such that ∀θ ∈ [θ1, θ2], it holds
that |g(θ, k, h)| ≥ 1 + Ck.

We construct an initial data with its Fourier transform as follows.

û0(ξ) =

{
0 if θ /∈ [θ1, θ2],√
h(θ2 − θ1)−1 if θ ∈ [θ1, θ2].

(1.64)
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Figure 1.6: The amplification factor for the explicit central difference scheme
in two different cases: bµ < 0.5 (solid) and bµ > 0.5 (dashed).

It is easy to find that

∥ u0 ∥h= 1. (1.65)

On the other hand, we compute the norm at tn.

∥ un ∥2h =

∫ π
h

−π
h

(û(ξ))2dξ

=

∫ θ2

θ1

|g|2n dθ

θ2 − θ1

≥ (1 + Ck)2n.

(1.66)

In particular, at the time step very close to the terminal time T , we have

∥ un ∥2h≥
1

2
e2TC ∥ u0 ∥2h . (1.67)

This proves the instability.

This theorem justifies the von Neumann analysis, namely, one finds the
amplification factor and check whether the stability condition above holds
or not.

For instance, we apply the von Neumann analysis to the explicit central
difference. In fact, from (1.62), we have (see Figure 1.6)

g = (1− 2bµ) + 2bµ cos θ. (1.68)
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The stability condition may be found from

|g| ≤ 1 ⇔ 2bµ ≤ 1 ⇔ µ ≤ 1

2b
⇔ k ≤ h2

2b
. (1.69)

We observe that this is consistent with our previous result.
Next, we apply the von Neumann analysis to an implicit central differ-

ence scheme.
un+1
m − unm

k
= b

un+1
m+1 − 2un+1

m + un+1
m−1

h2
. (1.70)

In fact, the computation of amplification factor is simply to make a
correspondence g with a time forward stepping, and a correspondence eilθ

with un+l. For the implicit central-difference scheme, we have

g − 1

k
= b

geiθ − 2g + ge−iθ

h2
. (1.71)

or,

−(1 + 2bµ)g + bµg(eiθ + e−iθ) = −1. (1.72)

Therefore, the amplification factor is

g =
1

(1 + 2bµ)− 2bµ cos θ
. (1.73)

We conclude that this implicit scheme is unconditionally stable, as 0 <
g ≤ 1, ∀µ. This property allows large time step size, which is very useful for
many applications.

In the following, we introduce several other schemes and make von
Neumann analysis.

First, the Crank-Nicolson scheme uses the average of uxx at tn and tn+1.

un+1
m − unm

k
=
b

2
(
unm−1 − 2unm + unm+1

h2
+
un+1
m−1 − 2un+1

m + un+1
m+1

h2
). (1.74)

Note that here the first term on the righthand side is explicit, and
the second one implicit. Moreover, if we perform Taylor expansion at
(xm, t

n+1/2), it is easy to show that the scheme has a second order accu-
racy in both space and time.

We may rewrite the scheme in a vector form. Let un = (· · · , unj , · · · )T
be the vector at time tn. The Crank-Nicolson scheme is

un+1 − un =
bµ

2
(Aun +Aun+1). (1.75)

Here A = tridiag(1,−2, 1). Therefore, the scheme gives

(I − bµ

2
A)un+1 = (I +

bµ

2
A)un. (1.76)
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or,

un+1 = (I − bµ

2
A)−1(I +

bµ

2
A)un. (1.77)

Actually, some previous discussed schemes may be rewritten in a vector
form. For instance, the explicit central-difference scheme is

un+1 = (I + bµA)un. (1.78)

The implicit scheme is

un+1 = (I − bµA)−1un. (1.79)

Comparing these two schemes and the Crank-Nicolson scheme, we observe
that all are an approximation (time integration) for the semi-discrete system

∂

∂t
u = bAu. (1.80)

The exact solution to the semi-discrete system is

u(t) = ebAtu(0) = (1 + bAt+
(bAt)2

2
+ · · · )u(0). (1.81)

Besides the Crank-Nicolson scheme, another naturally devised scheme
with second order accuracy in both space and time is the leapfrog scheme.

vn+1
m − vn−1

m

2k
= b

vnm+1 − 2vnm + vnm−1

h2
. (1.82)

We formally follow the von Neumann analysis and compute the amplification
factor as follows.

g − 1
g

2k
= b

eiθ − 2 + e−iθ

h2
. (1.83)

That is,

g − 1

g
= −8bµ sin2

θ

2
. (1.84)

The amplification factor g solves

g2 + 8bµ sin2
θ

2
g − 1 = 0. (1.85)

The too roots satisfy

g1g2 = −1, g1 + g2 = −8bµ sin2
θ

2
(1.86)

Therefore, we have either |g1| > 1 or |g2| > 1. The leapfrog scheme is
therefore unstable.
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To rectify the stability and maintain the accuracy for the leapfrog
scheme, a Dufort-Frankel scheme was proposed.

vn+1
m − vn−1

m

2k
= b

vnm+1 − (vn+1
m + vn−1

m ) + vnm−1

h2
. (1.87)

In a similar way, we compute the amplification factor from

g − 1
g

2k
=

b

h2
(eiθ − (g +

1

g
) + e−iθ). (1.88)

This leads to

(1 + 2bµ)g2 − 4bµ cos θg − (1− 2bµ) = 0. (1.89)

The roots are

g± =
2bµ cos θ ±

√
1− 4b2µ2 sin2 θ

1 + 2bµ
, (1.90)

if 1− 4b2µ2 sin2 θ ≥ 0. In this case, we find that

|g±| ≤
2bµ| cos θ|+

√
1− 4b2µ2 sin2 θ

1 + 2bµ
≤ 2bµ+ 1

1 + 2bµ
= 1. (1.91)

The scheme is stable.

On the other hand, if 1− 4b2µ2 sin2 θ < 0, we find that

|g±|2 ≤
(2bµ cos θ)2 − 1 + 4b2µ2 sin2 θ

(1 + 2bµ)2
=

4b2µ2 − 1

4b2µ2 + 4bµ+ 1
< 1. (1.92)

Therefore, the Dufort-Frankel scheme is unconditionally stable and possess
a second order of accuracy.

1.5 Lax-Richtmyer Equivalence Theorem

As mentioned before, numerical convergence is an important property for
a scheme. Because it is a global property, to prove convergence is not an
easy task. On the other hand, the von Neumann analysis renders a handy
tool for us to analyze the stability, which is another global property for
a scheme. The Lax-Richtmyer theorem bridges these two properties, and
therefore pave the way toward the convergence analysis. The main theorem
is as follows.

Theorem 1.2. For a consistent one step linear scheme for Cauchy problem
of a well-posed linear partial differential equation, stability is the necessary
and sufficient condition to convergence.
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Figure 1.7: The truncation operator is a low-pass filter.

To facilitate the proof, we need to be more precise in interpreting nu-
merical solutions. While the solution to partial differential equation lies in
L2(R), the numerical solution lies in l2 (also denoted as L2(hZ). We relate
them to the same function space by a truncation operator and an interpola-
tion operator.

The truncation operator T : L2(R) → l2 maps a continuous function
u(x) to a grid function as follows. Suppose that the Fourier transform of
u(x) is û(ξ), then grid function Tu takes m-th grid value as

Tum =
1√
2π

∫ π/h

−π/h
eimhξû(ξ)dξ. (1.93)

In fact, they are related by

T̂ u(ξ) = û(ξ), |ξ| ≤ π/h. (1.94)

We remark that Tum ̸= u(xm) in general. Furthermore, the truncation
operator may be regarded as a low-pass filter in terms of signal processing,
as shown in Figure 1.7.

Next, we define the interpolation operator S : l2 → L2(R), which maps
a grid function v to a continuous function Sv(x) as follows.

Suppose that the discrete Fourier transform of v is v̂(ξ), then we define
Sv by

Sv(x) =
1√
2π

∫ π/h

−π/h
eixξ v̂(ξ)dξ. (1.95)

In other words, the spectra are related by (see Figure 1.8)

Ŝv(ξ) =

{
v̂(ξ), |ξ| ≤ π/h,
0, |ξ| > π/h.

(1.96)
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Figure 1.8: Interpolation operator.

With these operators, we have clearer definitions for some properties
of a numerical scheme. In particular, a scheme is convergent for Cauchy
problem of a partial differential equation if ∀h, k → 0, ∀u solution to partial
differential equation, and ∀v numerical solution with initial data Sv0 →
u(·, 0) in L2, it holds that Svn → u(·, tn) in L2 for tn = nk.

As we already know, a linear partial differential equation has a unique
dispersion relation q(ξ), i.e. its solution is û(ξ, t) = û(ξ, 0)eq(ξ)t. Meanwhile,
a scheme has a unique amplification factor g(hξ, h, k), i.e. numerical so-
lution is ûn+1(ξ) = gûn(ξ). Therefore, a scheme is consistent to a partial
differential equation if for |ξ| ≤ π/h, it holds that

ekq(ξ) − g

k
= o(1), in (h, k). (1.97)

A scheme is stable if ∀T > 0, there exists CT > 0, such that ∀0 < n <
T/k, it holds |gn| ≤ CT . As we have proved in the von Neumann analysis,
the stability is equivalent to the existence of a K such that |g| ≤ 1 +Kk.

Proof. We first prove that stability implies convergence. We first assume
that the numerical initial data is taken as precisely v0 = Tu(x, 0). By this
choice, we have

∥u(·, 0)− Sv0∥2 = ∥u(·, 0)− STu(·, 0)∥2 =
∫
|ξ|>π/h

|û0(ξ)|2dξ. (1.98)

Because u(·, 0) ∈ L2, this term approaches to zero as h→ 0.

The Fourier transforms of the exact solution and numerical solution are
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expressed explicitly. So we have, at time t = tn

∥u(·, tn)− Svn∥2

=

∫ +∞

−∞
|u(x, tn)− Svn(x)|2dx

=

∫ +∞

−∞
|û(ξ, tn)− Ŝvn(ξ)|2dξ

=

∫ π/h

−π/h
|eqtn − gn|2|û0(ξ)|2dξ +

∫
|ξ|>π/h

|eqtn |2|û0(ξ)|2dξ.

(1.99)

Now we define a function

Φh(ξ) =

{
|eqtn − gn|2|û0(ξ)|2, |ξ| ≤ π/h,
|eqtn |2|û0(ξ)|2, |ξ| > π/h.

(1.100)

Due to the well-posedness of the partial differential equation and the stability
of the numerical scheme, we know that both |eqtn−gn| and |eqtn | are bounded
for any tn ≤ T (T is a given terminate time). In addition, we have u(·, 0) ∈
L2, therefore it holds that Φh ∈ L1.

For each fixed ξ, it is observed that

Φh(ξ) = |eqtn − gn|2|û0(ξ)|2, as h→ 0. (1.101)

Moreover, from the bounds of g and q, as well as the consistency, we may
derive

|eqtn − gn|

= |eqk − g|
n−1∑
j=0

e(n−j−1)qkgj

≤ |eqk − g|nC2
T

≤ nC2
Tko(1).

(1.102)

Due to nk ≤ T , the above term is on the order of o(1).

Noticing that Φh(ξ) ≤ (2CT )
2|û0(ξ)|2, by the Lebesgue dominated con-

vergence theorem, we have

lim
h→0

∫ +∞

−∞
Φhdξ = lim

h→0

∫ +∞

−∞
|û(ξ, tn)− Ŝvn(ξ)|2dξ = 0. (1.103)

Up to this point, the convergence is proved for the case v0 = Tu(·, 0).
For general numerical initial data v0 ̸= Tu(·, 0), we compare an corre-
sponding solution vn with the numerical solution wn that takes initial data
w0 = Tu(·, 0). By the triangular inequality, we derive that

∥u(·, tn)− Svn∥ ≤ ∥u(·, tn)− Swn∥+ ∥Swn − Svn∥. (1.104)
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Figure 1.9: Construction of initial data in spectral space.

The first term converges to 0, and the second term converges as well. To
see this, we derive

∥Swn − Svn∥
= ∥S(wn − vn)∥
= ∥wn − vn∥l2
≤ CT ∥w0 − v0∥l2
= CT ∥Tu(·, 0)− v0∥l2
≤ CT ∥u(·, 0)− Sv0∥
→ 0.

(1.105)

Now we turn to the second part of the theorem, namely, to prove that
instability implies divergence. By instability, we know that for any M ∈ IN ,
there exist ξM , hM , kM , such that

|g(hMξM , hM , kM )| > 1 +MkM , with |hMξM | ≤ π. (1.106)

Since g is continuous, there exists a neighborhood of ξM with radius ηM > 0,
denoted as IM , such that

|g(hMξ, hM , kM )| ≥ 1 +
M

2
kM , for ξ ∈ IM . (1.107)

In particular, we may choose ηM ≤ M−2, hM ≤ hM−1, kM ≤ kM−1.We
claim, yet without proof, that it is possible to choose these intervals IM
disjoint.

We define αM = 1/(
√
ηMM), and take initial data u(x, 0) =

∑
M wM (x),

see Figure 1.9. Here wM has the spectral representation

ŵM (ξ) =

{
αM , ξ ∈ IM ,
0, elsewhere.

(1.108)
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We check that u(·, 0) ∈ L2 by

∥u(·, 0)∥2 = ∥û(·, 0)∥2 =
∑
M

∥ŵM∥2 = 2
∑
M

α2
MηM = 2

∑
M

1

M2
< +∞.

(1.109)
At a given time T , by stability of the partial differential equation, we know
that |eqt| ≤ CT , ∀t ≤ T . Take M ≥ 8(CT − 1)/T , and take time step
n ∈ [T/2kM , T/kM ].

Let numerical solution to be vn at time tn. From instability, we know
that for ∀ξ ∈ IM ,

|g(hξ)n − eq(ξ)nk| ≥ |g(hξ)|n − CT

≥ (1 +
1

2
MkM )n − CT

≥ 1 +
n

2
MkM − CT

≥ M

2

T

2
− MT

8

=
MT

8
.

(1.110)

Therefore we estimate the difference between the numerical solution and the
exact solution as follows.

∥Svn − u(·, tn)∥2 ≥
∫
IM

|g(hξ)n − eq(ξ)nk|2|û(ξ, 0)|2dξ

≥
∫
IM

(
MT

8

)2

α2
Mdξ

= 2
M2T 2

64
α2
MηM

≥ T 2

32
.

(1.111)

This does not converge to zero. Therefore convergence does not hold if
stability does not hold.

We remark that though we only prove that vn does not converge to the
exact solution, actually the numerical solution ∥vn∥l2 → +∞.

We also remark that by the Duhamel’s principle, it may be shown that
the same theorem holds for general inhomogeneous linear partial differential
equation.

1.6 Some Further Discussions

1.6.1 Boundary Condition: A Brief Discussion

Consider the heat equation

ut = buxx, x ∈ [α, β]. (1.112)
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x0 x1 x2 · · · xN−1 xN

Figure 1.10: The Dirichlet boundary condition.

x−1 x0 x1 x2

Figure 1.11: The Neumann boundary condition.

For the Dirichlet boundary condition,{
u(α, t) = uα(t),

u(β, t) = uβ(t),
(1.113)

We notice that the explicit central difference scheme

un+1
m = (1− 2bµ)unm + bµ(unm−1 + unm+1), (1.114)

uses a three-point stencil. The numerical scheme forms a close system under
the assignment for the boundary grid points with (see Figure 1.10){

un0 = uα(t
n),

unN = uβ(t
n).

(1.115)

On the other hand, a Neumann boundary condition ux(α, t) = 0 (and
similar for the boundary condition at x = β) requires more detailed analysis.

One way to treat the Neumann boundary condition is to take

u1 − u0
h

= 0. (1.116)

This leads to u0 = u1, and hence the evolution is governed by

un+1
1 = (1− bµ)un1 + bµun2 = un1 + bµ(un2 − un1 ). (1.117)

The local truncation error is on the order of O(h), if we compare the nu-
merical boundary condition with the exact one at x = α.

In general, the overall accuracy depends on both the inner scheme and
the numerical boundary condition. Therefore, it is important to improve
the accuracy at the boundary.

One way to improve the accuracy at the boundary is to introduce a
ghost point x−1 = α−h, as shown in Figure 1.11. Similar treatment applies
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to the other boundary xN = β. Noticing that u1−u−1

2h = ux+O(h2), we have
u−1 = u1 which leads to

un+1
0 = (1− 2bµ)un0 + 2bµun1 = un0 + 2bµ(un1 − un0 ). (1.118)

An alternative is to design a one-sided second order boundary condition.
To this end, we make Taylor expansions to the second order as follows.

u1 = u0 + uxh+
uxx
2
h2 +O(h3), (1.119)

u2 = u0 + 2uxh+
uxx
2

(2h)2 +O(h3). (1.120)

(1.121)

This means

ux =
4u1 − 3u0 − u2

2h
+O(h2) (1.122)

Therefore, we obtain a second order accurate boundary condition

u0 =
4u1 − u2

3
. (1.123)

This leads to a formula for u1 as follows.

un+1
1 = (1− 2bµ)un1 + bµ(

4un1 − un2
3

+ un2 )

= (1− 2bµ

3
)un1 +

2bµ

3
un2

= un1 +
2bµ

3
(un2 − un1 )

(1.124)

We remark that the construction of one-sided boundary condition is
not unique, as more grid points may be included in the expansion.

1.6.2 An Alternative Way of Thinking: Approximate
Integral Method

We now discuss an algorithm, which takes quite different way of thinking.
We still consider the diffusion equation

ut = buxx. (1.125)

For the heat equation, the exact solution is

u(t+ k, x) =
1√
4πbk

∫ +∞

−∞
e−(x−y)2/4bku(t, y)dy. (1.126)

Consider a simple reconstruction of the numerical data as shown in
Figure 1.12

u(tn, x) = unm for|x−mh| < h

2
. (1.127)
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x

u(tn, x)

xnxn − h
2 xn + h

2

Figure 1.12: Reconstruction of the numerical data.

We obtain the exact solution at tn+1

un+1
m =

∑
l

1√
4πbk

unl

∫ xl+
h
2

xl−h
2

e−(mh−y)2/4bkdy. (1.128)

Denoting the coefficients

Kj =
1√
4πbk

∫ (j+ 1
2
)h

(j− 1
2
)h

e−ϵ2/4bkdϵ =
1

2

(
erf

(
j + 1

2

2
√
bµ

)
− erf

(
j − 1

2

2
√
bµ

))
,

(1.129)

we obtain

un+1
m =

∑
l

Km−lu
n
l =

∑
j

Kju
n
m−j . (1.130)

Theoretically speaking, this algorithm takes numerical error only from
the reconstruction and the average. However, in real applications, the nu-
merical convolution K ∗ un is very expensive, and a truncated convolution
is usually performed. That is, we use

un+1
m =

p∑
j=−p

Kju
n
m−j . (1.131)

To make Kp negligible, we notice that

Kp ≈
h

2

d

dx
erf

(
p

2
√
bµ

)
=

h√
4πbk

e−p2/4bµ. (1.132)

Therefore, we choose p ≥ C0
√
µ for a certain constant C0. We call this

method the approximate integral method.
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1.6.3 Convection-Diffusion Equation

A linear advection-diffusion equation reads

ut + aux = buxx. (1.133)

A natural choice is an explicit central-difference scheme.

un+1
m − unm

k
+ a

unm+1 − unm−1

2h
= b

unm+1 − 2unm + unm−1

h2
. (1.134)

or, we have

un+1
m = (1− 2bµ)unm + bµ(1− α)unm+1 + bµ(1− α)unm−1. (1.135)

Here we define α = ha
2b . It is a cell Reynolds number as h, a and b are the

grid length, the advection velocity and the viscosity, respectively.
From previous study, we know that this scheme is stable if an only if

|1− 2bµ|+ |bµ(1− α)|+ |bµ(1 + α)| ≤ 1. (1.136)

This is equivalent to 2bµ ≤ 1 and 1 − α ≥ 0, i.e., µ ≤ 1
2b and h ≤ 2b

a .
The first requirement is standard for parabolic equations. The second one
confines the spatial grid size to be small enough.

A consideration comes from the study of the pure advection equation

ut + aux = 0, a ≥ 0. (1.137)

As shall be explained later in the next chapter, it is recommended to use an
upwind scheme, namely, to obtain un+1

m in terms of unm−1, u
n
m.

ux ∼
unm − unm−1

h
. (1.138)

Therefore, we take an upwind scheme for the advection-diffusion equation
as follows.

un+1
m − unm

k
+ a

unm − unm−1

h
= b

unm+1 − 2unm + unm−1

h2
. (1.139)

It may be rewritten as

un+1
m = (1− 2bµ(1 + α))unm + bµunm+1 + bµ(1 + 2α)unm−1. (1.140)

Therefore, the stability condition is

|1− 2bµ(1 + α)|+ bµ+ bµ(1 + 2α) ≤ 1 (1.141)

This is equivalent to
2bµ(1 + α) ≤ 1, (1.142)
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Figure 1.13: Wave profile for the Burgers’ equation.

or, with the definition λ = k/h,

aλ+ 2bµ ≤ 1. (1.143)

We remark that aλ ≤ 1 is the CFL (Courant-Friedrichs-Lewy) stability
condition for ut+ aux = 0. We shall discuss this in the next chapter. In the
mean time, 2bµ ≤ 1 is the stability condition for the diffusion equation.

We may use the schemes discussed before to treat nonlinear convection-
diffusion equations. For instance, we consider the Burgers’ equation

ut +
(u2)x
2

= buxx. (1.144)

An exact solution to this equation is (see Figure 1.13)

u(t, x) = a− c tanh[
c

2b
(x− at)]. (1.145)

Let a > c > 0. An explicit upwind scheme reads

un+1
m − unm

k
+

(unm)2 − (unm−1)
2

2h
= b

unm+1 − 2unm + unm−1

h2
. (1.146)

It is obvious that the von Neumann analysis does not work anymore due
to the nonlinearity. Even stability holds, the Lax-Richtmeyer equivalence
theorem does not apply and the convergence is under question. Nevertheless,
we expect that stability holds if

(a+ c)λ+ 2bµ ≤ 1. (1.147)
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1.6.4 Von Neumann Analysis for More General Situation

We shall briefly discuss stability for two more cases. First, for a multi-step
scheme, the von Neumann stability analysis leads to a polynomial for the
amplification factor. For instance, for the leap-frog scheme

un+1
m − un−1

m

2k
= b

unm+1 − 2unm + unm−1

h2
, (1.148)

we may formally substitute un+j
m+l with g

jeilθ to obtain

g − 1
g

2k
= b

eiθ − 2 + e−iθ

h2
. (1.149)

Therefore, the amplification factor is a root to

g2 + 8bµ sin2
θ

2
g − 1 = 0. (1.150)

We observe that g is not a polynomial of θ.

In general, g is a root to the polynomial ϕ(g, θ) = 0. Let the ν-th
branch of root be gν(θ). The stability condition reads as follows.

Theorem 1.3. Stability holds if all the roots gν(θ) to ϕ(g, θ) satisfy the
following conditions. First, ∃K, s.t. ∀ν, |gν(θ)| ≤ 1+Kk. Second, ∃c0, c1 >
0, such that for all c0 ≤ |gν(θ)| ≤ 1 +Kk, |gν(θ)| is a simple root; and for
any other root gµ(θ), it holds that |gµ(θ) − gν(θ)| ≥ c1 for h, k sufficiently
small.

Next, we consider the stability for a system of partial differential equa-
tions. We consider

ut = Buxx. (1.151)

The numerical stability is again based on the well-posedness of the partial
differential equations. To check the well-posedness, we perform a dispersion
relation analysis with the form of solution

u = Ueλt+iωx. (1.152)

Substituting this into (1.151), we obtain

λU = −Bω2U. (1.153)

Therefore, the growing rate is an eigenvalue to the linear system

λI + ω2B = 0. (1.154)

To make Reλ ≤ 0, we require B to be positive-definite. In particular, a
special case is B = diag(b1, · · · , bn) with bi ≥ 0.
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For a positive-definite matrix B, we consider the solution in the form
of

unm = Uneiωx. (1.155)

Then a numerical scheme leads to an amplification factor defined by

Un+1 = GUn, (1.156)

where G is a matrix. Numerical solution

Un = GnU0. (1.157)

Obviously, stability holds if ∥ Gn ∥≤ CT . It is therefore necessary that
ρ(G) ≤ 1 +Kk. Yet it is not enough to maintain stability in general.

If the G matrix has two distinct eigenvalues, then it may diagonalized
and the condition ρ(G) ≤ 1 guarantees the stability. However, if a double
eigenvalue is the case, then we notice that[

α β
0 β

]n
=

[
αn nαn−1β
0 αn

]
. (1.158)

For example, a first order scheme for the system{
u1t = u2xx,

u2t = 0,
(1.159)

may be taken as follows (assume k = h){
u1,n+1
m = u1,nm − (u2,nm+1 − 2u2,nm + u2,nm−1),

u2,n+1
m = u2,nm .

(1.160)

The amplification factor matrix is

G =

(
1 4 sin2 θ

2
0 1

)
. (1.161)

The spectral radius is ρ(G) = 1. However, instability occurs as we have

Gn =

(
1 4n sin2 θ

2
0 1

)
. (1.162)

For another example, we consider a two-variable system.{
vt = b11vxx + b12wxx,

wt = b21vxx + b22wxx.
(1.163)
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Consider an explicit central difference scheme
vn+1
m − vnm

k
= b11

vnm−1 − 2vnm + vnm+1

h2
+ b12

wn
m−1 − 2wn

m + wn
m+1

h2
,

wn+1
m − wn

m

k
= b21

vnm−1 − 2vnm + vnm+1

h2
+ b22

wn
m−1 − 2wn

m + wn
m+1

h2
.

(1.164)
Substituting the form of the amplification factor expression[

vn+1

wn+1

]
=

[
g11 g12
g21 g22

] [
vn

wn

]
, (1.165)

we find that{
(g11 − 1)vn + g12w

n = b11µ(−4 sin2 θ
2)v

n + b12µ(−4 sin2 θ
2)w

n,

g21v
n + (g22 − 1)wn = b21µ(−4 sin2 θ

2)v
n + b22µ(−4 sin2 θ

2)w
n.

(1.166)

Therefore, the amplification factor matrix is

G =

[
1− 4b11µ sin

2 θ
2 −4b12µ sin

2 θ
2

−4b21µ sin
2 θ
2 1− 4b22µ sin

2 θ
2

]
= I − 4µ sin2

θ

2

[
b11 b12
b21 b22

]
.

(1.167)

1.7 Multi-dimensional Diffusion Equation

In the previous sections, we studied schemes in one-space dimensions. Now
we consider the heat equation in two space dimensions.

ut = b11uxx + 2b12uxy + b22uyy. (1.168)

Here b11, b12 > 0, and b212 ≤ b11b22. After a change of coordinates, the B
matrix may be diagonalized. The equation then becomes

ut = b̃11ux̃x̃ + b̃22uỹỹ. (1.169)

Here b̃11, b̃12 > 0. In the following, we omit the tildes and still denote the
equation as

ut = b11uxx + b22uyy. (1.170)

1.7.1 Time Splitting

In a square uniform grid with mesh size hx, hy in the two dimensions, re-
spectively, the simplest explicit scheme reads as follows.

un+1
l,m − unl,m

k
= b11

unl−1,m − 2unl,m + unl+1,m

h2x
+ b22

unl,m−1 − 2unl,m + unl,m+1

h2y
.

(1.171)
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Here unl,m ∼ u(xl, ym, t
n). The scheme may be slightly modified as follows.

First, we consider the equation and scheme{
ut = b11uxx,

u⋆ = Px(k)u
n,

(1.172)

where Px denotes an advancing for one time-step k. Next, we consider the
equation and scheme {

ut = b22uyy,

un+1 = Py(k)u
⋆,

(1.173)

where Py denotes an advancing for one time-step k.

If we take explicit centered difference schemes in both dimensions, then
the resulted scheme is as follows.{

u⋆l,m = (1− 2bµx)u
n
l,m + bµx(u

n
l−1,m + unl+1,m),

un+1
l,m = (1− 2bµy)u

⋆
l,m + bµy(u

⋆
l,m−1 + u⋆l,m+1).

(1.174)

Here µx = k
h2
x
, µy = k

h2
y
. It may also be formally written as

un+1 = Py(k)Px(k)u. (1.175)

However, it is evident that this scheme differs from un+1 = Px(k)Py(k)u,
and both time-splitting methods introduce error on the first order O(k). In
the explicit scheme, the error is first order in time even for one space di-
mension. Therefore, this time splitting is reasonably satisfactory. However,
if a second order scheme is used, e.g., the Crank-Nicolson scheme or the
DuFort-Frankel scheme, then the above splitting is not compatible and re-
duces the accuracy order for the overall scheme. To solve this problem,
a Strang-splitting technique is used, which yields a second order accuracy.
More precisely, if we have second order schemes in time

un+1 = Px(k)(un, un−1), (1.176)

for one-step update in the x-dimension, and

un+1 = Py(k)(un, un−1), (1.177)

for one-step update in the y-dimension, then we may take

un+1 = Px(
k

2
)Py(k)Px(

k

2
)(un, un−1). (1.178)
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1.7.2 ADI Method on a Square

Consider the Crank-Nicolson scheme in two space dimensions

un+1
l,m − unl,m

k
=

1

2
b11

unl+1,m − 2unl,m + unl−1,m

h2x
+

1

2
b12

un+1
l+1,m − 2un+1

l,m + un+1
l+1,m

h2x

+
1

2
b22

unl,m+1 − 2unl,m + unl,m−1

h2y
+

1

2
b21

un+1
l,m+1 − 2un+1

l,m + un+1
l,m−1

h2y
(1.179)

Let unm = (un0,m, · · · , unl,m, · · · , unL,m) be the value at y = mh, t = nk, and

un = (un0 , · · · , unm, · · · , unM )T be the grid function at t = nk. The Crank-
Nicolson scheme may be rewritten as

un+1 − un

k
=

1

2
(A1u

n+1 +A1u
n) +

1

2
(A2u

n+1 +A2u
n) +O(k2). (1.180)

It is readily shown to be second order in both space and time, when the
Taylor expansion is performed at t = (n+ 1

2)k, x = lhx, y = mhy. Here A1 is
a tridiagonal matrix, and A2 is a blocked tri-diagonal matrix. The inversion
of the Crank-Nicolson scheme is involved.

First, we rewrite the scheme as

(I − k

2
A1 −

k

2
A2)u

n+1 = (I +
k

2
A1 +

k

2
A2)u

n +O(k3). (1.181)

Next, we purposely insert two terms on both hand sides.

(I − k

2
A1 −

k

2
A2 +

k2

4
A1A2)u

n+1 = (I +
k

2
A1 +

k

2
A2 +

k2

4
A1A2)u

n +O(k3).

(1.182)
We decompose both sides to derive

(I − k

2
A1)(I −

k

2
A2)u

n+1 = (I +
k

2
A1)(I −

k

2
A2)u

n +O(k3). (1.183)

This means

un+1 = (I − k

2
A2)

−1(I − k

2
A1)

−1(I +
k

2
A1)(I +

k

2
A2)u

n. (1.184)

We notice that (I − k
2A1)

−1 and (I + k
2A1) commutes. That is,

un+1 = (I − k

2
A2)

−1(I +
k

2
A1)(I −

k

2
A1)

−1(I +
k

2
A2)u

n. (1.185)

This leads to the Peaceman-Rachford algorithm.{
(I − k

2A1)u
n+1/2 = (I + k

2A2)u
n,

(I − k
2A2)u

n+1 = (I + k
2A1)u

n+1/2.
(1.186)

We remark that each equation in this algorithm involve only the inver-
sion of the tri-diagonal matrix. The computing load is greatly reduced. The
whole method is called an ADI (Alternately directional implicit) method.
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Remark 1.3. We notice that un+1/2 may be not a good approximation to u
at t = (n+ 1

2)k in general.

An important issue is the numerical boundary condition. In fact, the
partial differential equation takes boundary conditions, which automatically
impose conditions for un and un+1 at the boundary. However, the boundary
condition for un+1/2 is not obvious.

Adding the two equations in (1.186)), we easily obtain 2un+1/2 = (I −
k
2A1)u

n+1 + (I + k
2A2)u

n. With this, we determine the boundary condition

for un+1/2.
Finally, we make a stability analysis for the ADI algorithm. To this

end, we first assume the form of solution as

unl,m = Unei(lθ+mϕ). (1.187)

For the first step in the Peaceman-Rachford algorithm we assume an ampli-
fication factor g̃ with which

u
n+1/2
l,m = Un+1/2ei(lθ+mϕ)

≡ g̃Unei(lθ+mϕ).
(1.188)

For the second step, we have an amplification factor g with which

un+1
l,m = Un+1ei(lθ+mϕ)

≡ gUn+1/2ei(lθ+mϕ)

= gg̃Unei(lθ+mϕ).

(1.189)

As we use the central difference in space, it is easy to obtain that{
(1 + 4b1µ1 sin

2 θ
2)g̃ = 1− 4b2µ2 sin

2 ϕ
2 ,

(1 + 4b2µ2 sin
2 ϕ

2 )g = 1− 4b1µ1 sin
2 θ
2 .

(1.190)

Hence, we obtain the amplification factor

gg̃ =
(1− 4b1µ1 sin

2 θ
2)(1− 4b2µ2 sin

2 ϕ
2 )

(1 + 4b1µ1 sin
2 θ
2)(1 + 4b2µ2 sin

2 ϕ
2 )
. (1.191)

It is obvious that |gg̃| ≤ 1. Therefore, the ADI algorithm is uncondi-
tionally stable.

Assignments

1. Show that the Cole-Hopf transform

u = −2b
φx

φ
, (1.192)
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transforms the Burgers’ equation

ut + uuxx = buxx. (1.193)

into a heat equation

φt = bφxx. (1.194)

2. Prove that 1√
π

∫ +∞
−∞ eiω(x−y)e−bω2tdω = 1√

bt
e−(x−y)2/4bt.

3. Find the order of accuracy for the scheme

un+1
m − un−1

m

2k
=
unm − 2unm−1 + unm−2

h2
.

4. For the explicit central difference scheme

un+1
m − unm

k
=
unm−1 − 2unm + unm+1

h2
,

it is easy to find that the modified equation is

ut +
k

2
utt − b(uxx +

h2

12
uxxxx) = 0.

Noticing that utt = b2uxxxx, the accuracy may be improved if we take

k =
h2

6b
. Verify this by numerical computations.

5. Find a sufficient condition for an implicit scheme to be stable.

un+1
m − unm

k
= b

un+1
m−1 − 2un+1

m + un+1
m+1

h2
. (1.195)

6. Perform the von Neumann analysis to determine stability for the Crank-
Nicolson scheme.

7. For a multi-step scheme, e.g., the leap-frog scheme, we perform the
von Neumann analysis with equation (1.84), and solve it to get the
amplification factor g±. The question is: what do we mean by g+ and
g− in this application? (Hint: Find the eigen-function corresponding
to g+ and g− respectively.)

8. For

ut = uxx, u0(x) =

{
1, x ∈ [−1, 1],
0, elsewhere,

(1.196)

compute with the explicit central-difference scheme under the following
boundary conditions, respectively.
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• Dirichlet boundary condition

u0(t,−A) = u(t, A) = 0. (1.197)

• Neumann boundary condition

ux(t,−A) = ux(t, A) = 0. (1.198)

There are two different ways to discretize this boundary condi-
tion, namely, either {

uN (t) = uN−1(t),
uN (t) = u−N+1(t),

(1.199)

or {
uN+1(t) = uN−1(t),
uN+1(t) = u−(N−1)(t).

(1.200)

• Play with different choices of (h, k), e.g., kn = h2
n
4 and hn = h0/2

n.

• Error analysis (numerical convergence rate). Let the solution
with the finest grid hN be uexact. Calculate error in the numerical
solution u(n) by a coarser gird hn as follows.

En = [
∑
m

hn(u
(n)
m − uexact(xm))2]1/2. (1.201)

Plot lg(En) versus lg(hn), and find the slope. This slope is called
the numerical convergence rate.

9. Compute {
ut = uxx,

u(x, 0) = e−x2
.

(1.202)

with the approximate integral method for p = 1, 2.

10. Perform numerical tests to check the numerical stability for the explicit
upwind scheme (1.146) for the Burgers’ equation. Take initial data
from the exact solution (1.145). Assign a proper boundary condition,
e.g., u = 0. Check that the scheme is stable if the stability condition
(1.147) holds; and otherwise (longer time step size) it is unstable.
(Notice that this is a nonlinear problem, our stability condition may
not be as straightforward as for the linear problems. Moreover, here
the stability only means that around the given exact solution (1.146).)

11. Show that the inhomogeneous equation

ut = A1u+A2u+ f(x, y, t)
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can be approximated to second order accuracy by

(I − k

2
A1h)ũ

n+1 = (I +
k

2
A2h)u

n +
k

2
fn+1/2,

(I − k

2
A2h)u

n+1 = (I +
k

2
A1h)ũ

n+1/2 +
k

2
fn+1/2,

where fn+1/2 is the vector formed by f(xl, ym, t
n+1/2.

12. Realize the ADI algorithm in a square.
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Chapter 2

Finite Volume Method for
Hyperbolic Equations

Hyperbolic differential equations are of great importance in sciences and
engineering, particularly when wave phenomena are under consideration.
Roughly speaking, most practical physical systems are diffusive hence of
parabolic type essentially. Their steady states, typically describing the
asymptotic behaviors, are of elliptic type. The wave phenomena, under
a proper scaling, are often better described by neglecting the diffusions and
the systems become hyperbolic.

2.1 Recap of Hyperbolic Partial Differential
Equations

2.1.1 Linear Wave Equation

The most well-known hyperbolic partial differential equation is the linear
wave equation, which describes free wave propagation in a homogeneous
medium.

utt − c2uxx = 0. (2.1)

By the d’Alembert principle, the solution may be expressed in terms of
a left-going wave and a right-going wave.

u(x, t) = ϕ(x+ ct) + ψ(x− ct), (2.2)

where the form of ϕ and ψ are determined by initial data of the Cauchy
Problem. For an initial-boundary-value problem, boundary conditions need
to be incorporated properly. For details, please refer to the appendix of this
chapter.

In general, a boundary condition is posed only along a line with inward
characteristic. For instance, for a linear advection equation

ut + cux = 0, (2.3)

41
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0 x

t

x0

x = x0 + ct

Figure 2.1: Boundary conditions for linear advection equation.

in a finite domain (x, t) ∈ [0, 1] × R+ with c > 0, we impose a boundary
condition at x = 0. No boundary condition is needed at x = 1, see Figure
2.1.

A characteristic curve/line is one of the major tool in studying wave
propagations in a hyperbolic system. For the linear advection equation, for
instance, along a straight line defined by

x = x0 + ct, (2.4)

It holds that

du

dt
|dx
dt

=c =
∂u

∂t
+
∂u

∂x
· dx
dt

= 0. (2.5)

This implies that u maintains constant along this line, that is, u(x, t) =
u(x0, 0). This line is called as a characteristic line. This line brings the
information from the initial data. In more general cases, as we shall see
for a nonlinear hyperbolic system later, the information may propagate in a
curve, which is called as a characteristic curve.

The direct consequence of the discussion for characteristic curve is the
finite propagation speed in a hyperbolic system. We recall that the heat
diffusion propagate with infinite speed.

Due to the finite propagation speed, the solution u(x, t) depends only
on previous information within a finite range in the (x, t)-plane. This defines
a domain of dependence.

Meanwhile, the information at (x, t) only influences a limited sub-
domain in the future, which defines a range of influence.
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Figure 2.2: Domain of dependence and range of influence.

2.1.2 A Function Space

The most distinct feature in hyperbolic partial differential equations is dis-
continuity. The generation and propagation of a spatially discontinuous
wave require discussions in a suitable function space, which should be “big-
ger” than the continuous function space such as C1. It turns out that a
total variation bounded (TVB) space is a suitable choice. We remark that
for two space dimensions, the suitable function space is not discovered yet.

The total variation for a function f(x) is defined as follows.

TV (f) = lim
ϵ→0

1

ϵ

∫
R
|f(x)− f(x− ϵ)|dx. (2.6)

In our numerical studies, the numerical solution is usually interpreted as
a piecewise constant function, that is, a grid function. For such a function,
the total variation is equivalent to

TV (f) =
∑
i

|fi − fi−1|. (2.7)

We remark that total variation does not define a norm. In fact, TV (f) =
0 only leads to f(x) = C where C may be non-zero.

It is straightforward to see that TV (u(x, t)) remains unchanged for a
linear advection equation. It is very important that TV (u(x, t)) is non-
increasing for a nonlinear equation in general.

2.1.3 Linear System

A direct generalization for a linear advection equation is a linear system.
Consider for u a vector-valued function, which is governed by

ut +Aux = 0. (2.8)
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Figure 2.3: Total variation.

If A is diagonalizable with complete eigen-vectors, then we collect all the left
eigenvectors to form a matrix P , namely, PAP T = Λ = diag(λ1, · · · , λN ).
Let w = Pu, we find that

wt + Λwx = 0. (2.9)

Therefore, we obtain a decoupled system. For each wi(x, t), the wave prop-
agation is governed by a linear advection equation

∂twi + λi∂xwi = 0. (2.10)

We remark that a special case which guarantees A to be diagonalizable
is when all the eigenvalues of A are distinct.

2.1.4 Nonlinear Conservation Laws: The Difficulties

For a scalar nonlinear conservation law

qt + f(q)x = 0, (2.11)

we further require a convex flux, that is

f
′′
(q) > 0. (2.12)

A representative model is the inviscid Burgers’ equation

ut +

(
u2

2

)
x

= 0. (2.13)

For a classical solution u(x, t) ∈ C1, it may be rewritten as

ut + uux = 0. (2.14)
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Figure 2.4: Monotone increasing initial data: rarefaction.

In this form, we may apply the characteristic approach. Consider a charac-
teristic curve defined implicitly by

dx

dt
= u(x, t), x(0) = x0. (2.15)

Along this curve, again we may compute

du

dt
|dx
dt

=u =
∂u

∂t
+
∂u

∂x
· dx
dt

= 0. (2.16)

This means that if a solution lies in C1, then u keeps constant along
each characteristic curve. Moreover, as u is a constant, the characteristic
curve is actually a straight line. Then the study of the equation becomes:
for any (x, t), does there exist a unique characteristic line going back to the
x-axis. If this is true, we simply take the corresponding initial data to get
the value for u(x, t).

This leads to a geometric approach. We plot simultaneously three plots,
namely, the flux function in the (q, f(q))-plane, the solution in (x, u)-plane,
and the characteristic lines in (x, t)-plane. Consider monotone initial data.
There are two possibilities.

• If the initial data is monotone increasing (and C1), then exist unique
solution in C1.

• If the initial data is monotone decreasing (and C1), then the character-
istic lines intersect in finite time. At this time, the solution becomes
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Figure 2.5: Monotone decreasing initial data: shock.

discontinuous as ux → +∞. If one keeps going with the character-
istic approach beyond this time, the solution flips over and becomes
multi-valued.

For the first case, the wave profile gets flattened, see Figure 2.4.
For the second case, the discontinuity propagates at a speed determined

by u across the shock front, see Figure 2.5.
For general initial data, both monotone increasing and monotone de-

creasing branches exist, and discontinuity develops for whatever smooth
initial data.

In studying nonlinear hyperbolic equations, there are two special cases,
which serve as the elementary waves. For the inviscid Burgers’ equation,
they are explicitly expressed as follows.

• Centered refraction wave u− < u+:

u(x, t) =


u−, if x < u−t;
x/t, if u−t < x < u+t;
u+, if x > u+t.

(2.17)

• Shock wave u− > u+:

1. The Rankine-Hugoniot relation determines the propagation speed.
It is actually an integral form of the equation. It may be obtained
formally by substituting ∂t by −s where s is the shock front prop-
agation speed, and then put a jump sign defined by [|f |] = f+−f−.
That is, we have

−s[|u|] + [|u
2

2
|] = 0. (2.18)

From this we derive

s =
u− + u+

2
. (2.19)

2. The Lax entropy condition u− > u+ arises from the intersection
of the two characteristics across the shock front. In particular,
if we draw the two characteristic lines with an arrow pointing
along the time evolving direction, we have the so-called “2-in-1-
out” situation. That is, both characteristic lines point toward the
wave front.



2.2. FINITE DIFFERENCE FOR LINEAR ADVECTION EQN 47

The solution therefore reads as follows.

u(x, t) =

{
u−, if x < st;
u+, if x > st.

(2.20)

2.1.5 Nonlinear System

For a nonlinear system it is more complicated. For instance, for the poly-
tropic gas in the Lagrangian coordinates, we have{

vt − ux = 0,

ut + p(v)x = 0.
(2.21)

The Riemann problem is solved with left-going waves R−, S−, and right-
going waves R+, S+. Here R−, R+ are central refraction, and S−, S+ are
shocks.

In the phase space, the left-going wave and the right-going wave give{
u⋆ = u− + f−(v⋆ − v−),

u+ = u⋆ + f+(v+ − v⋆).
(2.22)

Combining these two facts, we obtain v⋆ from

u+ = u− + f+(v+ − v⋆) + f−(v⋆ − v−). (2.23)

As u⋆ is obtained accordingly, the two waves are identified. This solves the
Riemann problem.

2.2 Finite Difference Methods for Linear
Advection Equation

Consider the linear advection equation

ut + cux = 0. (2.24)

The following finite difference schemes are readily obtained, among many
other possible designs. All schemes listed below are explicit ones. We shall
explain why implicit ones are not under consideration later.

• Central difference scheme:

un+1
m − unm

k
+ c

unm+1 − unm−1

2h
= 0. (2.25)

• Forward (in space) scheme:

un+1
m − unm

k
+ c

unm+1 − unm
h

= 0. (2.26)
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Figure 2.6: Solution for the linear advection equation.

• Backward (in space) scheme:

un+1
m − unm

k
+ c

unm − unm−1

h
= 0. (2.27)

• Lax-Friedrichs scheme:

un+1
m − un

m+1+un
m−1

2

k
+ c

unm+1 − unm−1

2h
= 0. (2.28)

If c > 0, the exact solution is u(x, t) = u0(x − ct), where u0(x) is the
initial data, see Figure 2.6. From this exact solution, we notice that the
forward scheme has no chance to be correct, because it takes information
from the wrong side, and the solution is likely to contain discontinuities.
This differs from the situation for the heat equation, where we are quite free
in choosing the stencil to reproduce the derivatives because the solution is
smooth in general.

We demonstrate the instability by a very simple argument. Let us think
about initial data of a Heaviside function

u0(x) = H(x) =

{
0, for x < 0,
1, for x > 0.

(2.29)

Moreover, let ck/h = 1. This reduces the forward scheme into

un+1
m = 2unm − unm+1. (2.30)

It is evident that unm = 1 for all m ≥ 1. This gives, in turn, that

un0 = −(2n − 1), for n > 1. (2.31)

Instability appears also for other grid points to the left. See Figure 2.7 for
an illustration.



2.2. FINITE DIFFERENCE FOR LINEAR ADVECTION EQN 49

t

x0 0 0 1 1

0 0 -1 1 1

0 1 -3 1 1

0 5 -7 1 1

Figure 2.7: Instability for the forward scheme.

In the meantime, the backward scheme with ck/h = 1 becomes

un+1
m = unm−1. (2.32)

This actually agrees with the exact solution. However, this does not apply
to nonlinear equation in general.

If c < 0 instead, the stabilities for the forward and backward schemes
change. Therefore, we define a downwind scheme and an upwind scheme
instead. If the stencil only consists of grid points from where the information
comes from, the upwind direction, we call the scheme upwind. If the stencil
only consists of grid points from the other side, we call the scheme downwind.
Therefore, the upwind scheme is a forward one if c < 0, and a backward one
if c > 0.

The upwind scheme is stable, under certain restrictions of the time step
size. We prove this by another type of stability analysis, namely, through
the modified equation.

As we shall see the reason, it is assumed that k ∼ h. Taylor expansions
lead to the following form for the upwind scheme (the backward scheme with
c > 0).

ut +
k

2
utt + c(ux −

h

2
uxx) +O(h2) = 0. (2.33)

Noticing that this implies that

ut = −cux +O(k), (2.34)

and
utt = c2uxx +O(k). (2.35)

Therefore, the numerical scheme actually solves, to the order of O(h), the
following equation with λ = ck/h.

ut + cux = −1

2
(kc2 − ch)uxx +O(h2)

=
ch

2
(1− λ)uxx +O(h2).

(2.36)
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We call the resulted partial differential equation as the modified equation.

ut + cux =
ch

2
(1− λ)uxx. (2.37)

As a positive diffusion requires λ ≤ 1, this gives the stability condition.
Fail to satisfy this condition leads to a negative viscosity, and numerically,
a blow up. This restriction on time step size is the famous CFL (Courant-
Friedrichs-Lewy) condition.

We may investigate the stability for these schemes by the von Neumann
analysis. For the central difference scheme, we compute

g = 1− iλ sin θ. (2.38)

It is always unstable.
For the upwind scheme, we compute

g = 1− λ+ λe−iθ. (2.39)

Again, we find that it is stable only if λ ≤ 1.
We may compute for the implicit scheme

un+1
m − unm

k
+ c

un+1
m+1 − un+1

m

h
= 0. (2.40)

The amplification factor reads

g =
1

1− λ+ λeiθ
(2.41)

It is unstable even when λ < 1.
On the other hand, we compute for another implicit scheme

un+1
m − unm

k
+ c

un+1
m − un+1

m−1

h
= 0. (2.42)

The amplification factor is

g =
1

1 + λ− λeiθ
. (2.43)

This scheme is unconditionally stable, namely, for any λ. Unfortunately,
this does not apply to nonlinear problems.



Chapter 3

Finite Volume Method for
Scalar Equations

3.1 Direction of Time

Though a scalar conservation law

qt + f(q)x = 0, (3.1)

remains unchanged under the transform (x, t) → (−x,−t), the more com-
plete physical system includes a diffusion term.

qt + f(q)x = εqxx. (3.2)

Symmetry in (x, t) does not hold for this system. As we described
before, the hyperbolic partial differential equation is obtained by dropping
out the diffusion terms to better capture the wave phenomena. The time
direction may be readily shown by a discussion on the entropy pairs.

Consider a classical solution with finite energy to the Burgers’ equation

ut +

(
u2

2

)
x

= ϵuxx. (3.3)

We multiply the equation by 2u.

(u2)t +

(
2u3

3

)
x

= 2ϵuuxx. (3.4)

We integrate over R. Noticing that

lim
x→±∞

u(x, t) = 0, (3.5)

due to the finite total energy, we integrate by part and reach at

d

dt

∫
R
u2dx = −2ϵ

∫
R
u2xdx. (3.6)

51
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Figure 3.1: Shock generated by the collision of two shocks (left); or by the
propagation of one shock (right).

The time direction therefore may be identified by requiring that the
integral of the entropy function u2 decreases. Moreover, we call the corre-

sponding flux function
2u3

3
as the entropy flux. These two form an entropy

pair. While it holds for a classical solution in the limit ϵ→ 0+ that

(u2)t +

(
2u3

3

)
x

= 0, (3.7)

for a non-classical solution (e.g. a shock solution) we have in a integral sense
that

(u2)t +

(
2u3

3

)
x

≤ 0. (3.8)

Accordingly the time direction is set as the direction for decreasing
entropy function, when we drop out the diffusion terms to get the hyperbolic
equation (3.1).

In general, hyperbolic problems have a fixed time direction and the
structure of solution plays a key role in numerical approximations. For
example, in the two subplots of Figure 3.1, we have either a shock generated
from the collision of two shocks, or simply propagation of a single shock. If
we look back from time t∗ = 2, we have no idea where this shock structure
comes from. This also explains why implicit schemes are not adopted for
calculating hyperbolic conservation laws.

We remark that the entropy pairs are not unique for a scalar conser-
vation law with a convex flux function. They are equivalent to each other
in the sense of selecting the same discontinuities, and also equivalent to the
Lax entropy condition.
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3.2 Godunov Method

Godunov first proposed a numerical method capable of capturing shocks
correctly in the 1960’s. This method was then generalized to the finite
volume method. Godunov method is designed with two important basic
ideas.

First, a cell averaged view for the grid function is taken. Instead of
regard the grid function as the value at a grid point, we define a cell around
a grid point xm as Cm = [xm−1/2, xm+1/2]. Then we regard the value unm at
(xm, t

n) as the cell average

qnm =
1

h

∫
Cm

q(x, tn) dx. (3.9)

We further define a numerical flux

Fn
m−1/2 =

1

k

∫ tn+1

tn
f(q(xm−1/2, t)) dt. (3.10)

Integrating the equation over the domain Cm × [tn, tn+1],we obtain

h(qn+1
m − qnm) + k(Fn

m+1/2 − Fn
m−1/2) = 0. (3.11)

The cell average is updated with

qn+1
m = qnm − k

h

(
Fn
m+1/2 − Fn

m−1/2

)
. (3.12)

This expression is exact, in contrast to the approximation one makes
for a finite difference scheme. The numerical algorithm then transforms into
the design of the numerical flux Fn

m−1/2.

The other basic idea in the Godunov method is the choice of the Rie-
mann solver as building blocks.

This starts with the assumption that the data at tn is taken as piecewise
constant, namely, u(x, tn) = unm for x ∈ Cm. Due to the finite propagation
speed, the exact solution within Cm is determined by unm−1, u

n
m, u

n
m+1, pro-

vided that the time step size is chosen to be small enough. Roughly speaking,
if the maximal characteristic curve slope max |f ′(q)| ≤ C, the time step size
is chosen as k ≤ h/2C. This is more stringent than the CFL condition, and
may be relaxed after a modified discussion in general.

It greatly reduces the coding cost as we only need the value at cell-
interface to get numerical flux. The detailed Riemann solutions need not be
computed.
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Figure 3.2: Riemann solution to qt + f(q)x = 0.

For a convex flux function f(q) with f
′′
(q) ≥ 0, we denote qs for the

unique stagnation value, namely f ′(qs) = 0. The numerical flux is

Fn
m−1/2 = f(q(xm−1/2, t)) =


f(qnm−1) if qnm−1 > qs, s > 0,
f(qnm) if qnm < qs, s < 0,
f(qs) if qnm−1 < qs < qnm.

=


min

qnm−1≤q≤qnm
f(q) if qnm−1 ≤ qnm

max
qnm≤q≤qnm−1

f(q) if qnm−1 ≥ qnm

(3.13)

Here s = (f(qnm) − f(qnm−1))/(q
n
m − qnm−1). We remark that the latter

expression applies to non-convex flux function as well. We also observe
that if f ′(q) does not change sign, then the Godunov scheme reduces to the
upwind scheme.

The Godunov method can be generalized to an REA algorithm, which
will be adopted extensively in our discussions.

• Reconstruct a piecewise polynomial function q̃(x, tn) from the cell av-
erages qnm. High resolution methods use polynomials, whereas the
Godnov’s cell average is a 0-th order polynomial.

• Evolve the solution for a time step, and find either exact or approxi-
mate solution at tn+1. This usually means a Riemann solver.

• Average the solution at tn+1 in each cell, that is,

qn+1
m =

1

h

∫
Cm

q(x, tn+1)dx. (3.14)

3.3 Conservative Form and Convergence

In an REA approach, the algorithm takes a conservative form, that is, the
increment of a cell average is obtained with the numerical fluxes across the
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cell boundary. We call such a scheme as a conservative scheme. A non-
conservative scheme usually lead to wrong propagation speed for a shock
wave.

We explain the shock speed by the inviscid Burgers’ equation with initial
data

u(x, 0) =

{
2, if x < 0,
1, if x > 0.

(3.15)

The exact solution is a shock wave.

u(x, t) =

{
2, if x < 3t/2,
1, if x > 3t/2.

(3.16)

We recall that an upwind scheme is in Conservative form.

un+1
m = unm − k

h

[
(unm)2

2
−

(unm−1)
2

2

]
. (3.17)

Its modified equation is

ut + cux =
ch

2
(1− λ)uxx. (3.18)

It gives a traveling profile for a shock wave with the correct propagation
speed, that is, the speed determined by the Burgers’ equation. The transi-
tion layer has a thickness on the order of ch(1− λ)/2.

In the meantime, recasting the inviscid Burgers’ equation into its prim-
itive form

ut + uux = 0, (3.19)

it is natural to take a non-conservative scheme as follows.

un+1
m = unm − k

h
unm(unm − unm−1). (3.20)

The difference between these two schemes is clearly seen from the fol-
lowing form.

un+1
m = unm − k

h

[
(unm)2

2
−

(unm−1)
2

2

]
+

k

2h
(unm − unm−1)

2. (3.21)

The modified equation for the non-conservative scheme is

ut + cux =
ch

2
(1− λ)uxx +

1

2
h(ux)

2. (3.22)

As a different traveling wave equation is obtained, even for h→ 0, different
propagation speed is obtained for a shock profile.

The following theorem relates a conservative scheme with correct shock
speed.
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Theorem 3.1. (Lax-Wendroff) Consider a sequence of grids {(j)k, (j)h},
with lim

j→+∞
(j)k = lim

j→+∞
(j)h = 0. Let the numerical solution be denoted as

(j)q = ((j)qnm). If the scheme is consistent (Lipschitz continuous), conserva-
tive, stable and S(j)q → q. Then q is a weak solution.

Remark 3.1. We note that besides the consistency and convergence, sta-
bility is taken as a premise. The schemes under consideration here are
nonlinear, for which the Lax-Richtmeyer theorem of equivalence does not
apply.

Before prove the theorem, we first clarify the notions appeared in this
theorem.

• By consistency, we require a Lipschitz continuity of the flux function,
that is, there exists a constant L such that

|F (qm−1, qm)− f(q̄)| ≤ Lmax(|qm − q̄|, |qm−1 − q̄|). (3.23)

• By stability, we assume that for each T , there is an R > 0 such that

TV((j)q(·, t)) < R, ∀ 0 ≤ t ≤ T, j = 1, 2, · · · . (3.24)

We remark that this stability definition excludes the case when infinite
many oscillations occur with finite amplitude. Instability may appear
as overflow (|u| → +∞) for parabolic equations, and oscillation for
hyperbolic equations.

• Here S(j)q(x, t) = S{(j)qnm} denotes a piecewise constant function that
takes the value qnm on the space-time mesh cell (xm−1/2, xm+1/2) ×
[tn, tn+1). It is indexed by j corresponding to the particular mesh
used, with (j)h and (j)k both approaching zero as j → ∞.

• The convergence Si(q) → q for the function sequence (j)q(x, t) to q(x, t)
in the sense that over every bounded set Ω = [a, b]× [0, T ] in the (x, t)-
space, it holds that∫ T

0

∫ b

a
|S(j)q(x, t)− q(x, t)| dx dt→ 0, as j → ∞. (3.25)

This is actually the 1-norm over the set Ω, so we can simply write

∥S(j)q − q∥1,Ω → 0, as j → ∞. (3.26)

• The introduction of a weak solution arises as follows. For a classical
solution q(x, t) to the equation

qt + f(q)x = 0, (3.27)
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we find that for any ϕ(x, t) ∈ C∞
0 (smooth function with compact

support), it holds that∫ t2

t1

∫ +∞

−∞
[qϕt + f(q)ϕx]dxdt = 0. (3.28)

We integrate by parts to get∫ ∞

0

∫ +∞

−∞
[qϕt + f(q)ϕx]dxdt = −

∫ ∞

−∞
q(x, 0)ϕ(x, 0)dx. (3.29)

Because continuous solution breaks down in a nonlinear hyperbolic
conservation law in general, we consider a broader sense of solution.
That is, if (3.29) holds for any ϕ(x, t) ∈ C∞

0 , then we call q a weak
solution.

Proof. We will show that the limit function q(x, t) satisfies the weak form.
Let ϕ be a C∞

0 test function. On the j-th grid, we define its discrete
version Φ(j) by (j)ϕnm = ϕ((j)xm,

(j)tn), where (
(j)xm,

(j)tn) is a grid point on
this grid. Similarly, (j)qnm denotes the numerical approximation on this grid.
To simplify notation, we will drop the superscript (j) below and simply use
ϕnm and qnm, but remember that (j) implicitly presents, and in the end we
must take the limits as j → ∞.

Multiply the conservative scheme

qn+1
m = qnm − k

h
(Fn

m+1/2 − Fn
m−1/2) (3.30)

by ϕnm to obtain

ϕnmq
n+1
m = ϕnmq

n
m − k

h
ϕnm(Fn

m+1/2 − Fn
m−1/2). (3.31)

This is true for all m and n on each grid j. If we sum (3.31) over all m
and n ≥ 0, we obtain

∞∑
n=0

∞∑
m=−∞

ϕnm(qn+1
m − qnm) = −k

h

∞∑
n=0

∞∑
m=−∞

ϕnm(Fn
m+1/2 − Fn

m−1/2). (3.32)

We now sum by parts, which just amounts to recombining the terms in each
sum.

m∑
i=1

ai(bi − bi−1) = ambm − a0b0 −
m−1∑
i=0

(ai+1 − ai)bi. (3.33)

Note that the original sum involved the product of am with differences of
b’s, whereas the final sum involves the product of bm with differences of a’s.
This is completely analogous to integration by parts, where the derivatives
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is moved from one function to the other. Just as in integration by parts,
there arise boundary terms ambm − a0b0.

We apply this Abel’s formula on both sides of (3.32) (for the n-sum on
the left and for the m-sum on the right). By our assumption that ϕ has
a compact support, then ϕnm = 0 for |m| or n sufficiently large. Hence the
boundary terms at m = ±∞, n = ∞ all drop out. The only boundary term
that remains is at n = 0 for t0 = 0. This gives

−
∞∑

m=−∞
ϕ0mq

0
m−

∞∑
n=1

∞∑
m=−∞

(ϕnm−ϕn−1
m )qnm =

k

h

∞∑
n=0

∞∑
m=−∞

(ϕnm+1−ϕnm)Fn
m−1/2.

(3.34)
Note that each of these sums is in fact a finite sum, since ϕ has compact

support. Multiplying by h and rearranging this equation gives

hk

[ ∞∑
n=1

∞∑
m=−∞

(
ϕnm − ϕn−1

m

k

)
qnm

+
∞∑
n=0

∞∑
m=−∞

(
ϕnm+1 − ϕnm

h

)
Fn
m−1/2

]
= −h

∞∑
m=−∞

ϕ0mq
0
m.

(3.35)

Now let j → ∞, so that (j)k, (j)h → 0 in (3.35). It is reasonably
straightforward, using the 1-norm convergence of (j)q to q and the smooth-
ness of ϕ, to show that the term on the top line of (3.35) converge to∫ ∞

0

∫ ∞

−∞
ϕt(x, t)q(x, t) dx as j → ∞. If we define initial data q0m by tak-

ing cell averages of the data q0(x), for example, then the right-hand side

converges to −
∫ ∞

−∞
ϕ(x, 0)q(x, 0) dx as well.

The remaining term in (3.35), involving Fn
m−1/2, is more subtle and

requires the additional assumptions on F and q that we have imposed. For
a three-point method (such as Godunov’s method), we have

(j)Fn
m−1/2 = F((j)qnm−1,

(j)qnm). (3.36)

and the consistency condition (3.23), with the choice q̄ = (j)qnm, gives

|(j)Fn
m−1/2 − f((j)qnm)| ≤ L|(j)qnm − (j)qnm−1|, (3.37)

where L is the Lipschitz constant for the numerical flux function. Since q(j)n

has bounded total variation, uniformly in j, it must be that

|(j)Fn
m−1/2 − f((j)qnm)| → 0, as j → ∞. (3.38)

for almost all values of m. Using this and the fact that (j)qn converges to q,
it can be shown that
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hk
∞∑
n=0

∞∑
m=−∞

(
ϕnm+1 − ϕnm

h

)
Fn
m−1/2 →

∫ ∞

0

∫ ∞

−∞
ϕx(x, t)f(q(x, t)) dxdt,

(3.39)
as j → ∞. This completes the demonstration that (3.35) converges to the
weak form (3.29). Since this is true for any test function ϕ ∈ C1

0 , we have
proved that q is in fact a weak solution.

For simplicity we assumed the numerical flux Fn
m−1/2 depends only on

the two neighboring values qnm−1 and qnm. However, the proof is readily
extended to schemes with a wider stencil, under a consistency condition that
the flux function is uniformly Lipschitz-continuous in all values on which it
depends.

Finally, we make several remarks.

• There usually exist more than one weak solutions. For the inviscid
Burger’s equation with initial data

u(x, 0) =

{
1, x < 0,
2, x > 0,

(3.40)

the following two weak solutions exist.

u(x, t) =


1, x < t,
x/t, t < x < 2t
2, x > 2t;

(3.41)

u(x, t) =

{
1, x < 3

2 t,
2, x > 3

2 t.
(3.42)

• The theorem guarantees the correct propagation speed when a numer-
ical shock profile is obtained. However, this does not mean that the
numerical shock profile gives a correct solution. The entropy condition
needs verification.

• Numerically, we do not really take j → ∞. Instead, we just double
grid.

Here we give two examples of conservative schemes. For an upwind
scheme of the inviscid Burgers’ equation, the numerical flux is

Fm+1/2 =


u2
m
2 , um, um+1 > 0,
0, um · um+1 ≤ 0,
u2
m+1

2 , um, um+1 < 0.

(3.43)

For a central difference scheme, we have

Fm+1/2 =
u2m + u2m+1

2
. (3.44)
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3.4 Entropy Condition

As discussed in the previous section, the Lax-Wendroff theorem does not
guarantee a weak solution to satisfy the entropy condition. From the theory
of hyperbolic conservation laws, we know that a “correct” solution should
satisfy an entropy condition. In a sense, the limiting behavior for a more
complete diffusive system

qt + f(q)x = ϵqxx, (3.45)

as ϵ→ 0+ is described by the combination of the weak form of equation

qt + f(q)x = 0, (3.46)

and an entropy condition.

Three kinds of entropy conditions are commonly used.

• Lax entropy condition. For a convex scalar conservation law, a
discontinuity propagating at speed s (given by the Rankine-Hugoniot
relation) satisfies

f ′(ql) > s > f ′(qr). (3.47)

• Oleinik entropy condition. There exists a constant E > 0 such
that for all a > 0, t > 0, and x ∈ R, it holds that

q(x+ a, t)− q(x, t)

a
<
E

t
. (3.48)

• Entropy pair. The last approach defines an entropy function η(q),
motivated by thermodynamic considerations in gas dynamics. The
entropy function η(q) is convex in q, i.e., η

′′
(q) > 0. Along with an en-

tropy function η(q), we define an entropy flux Ψ(q) =

∫
η′(q)f ′(q) dq.

For a classical solution, it is easy to check that

ηt +Ψx = 0. (3.49)

A weak solution q satisfies the weak form of the entropy inequality for
all ϕ ∈ C1

0 (R× R+) with ϕ(x, t) ≥ 0,∫ ∞

0

∫ ∞

−∞
[ϕtη(q) + ϕxΨ(q)] dxdt+

∫ ∞

−∞
ϕ(x, 0)η(q(x, 0)) dx ≥ 0. (3.50)

The entropy inequality (3.50) is often written formally as

η(q)t +Ψ(q)x ≤ 0. (3.51)
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In case of a scalar conservation law in one space dimension with a
convex flux, it may be shown that the three entropy condition are equivalent.
Although the Lax entropy condition seems to be most straightforward, it is
usually more convenient to adopt the entropy pair approach for theorem
proof of a general Cauchy problem. In fact, the Lax entropy condition may
be used for each shock. There is a general methodology of shock tracking
for solving hyperbolic conservation laws. In that approach, one detects and
follows each shock, using the Rankine-Hugoniot relation and the entropy
condition. The whole problem is then transformed to the calculations of a
smooth solution away from the shock, and the calculation of how the smooth
solution subdomains evolve or how the shock fronts evolve. The drawback
of this approach becomes obvious when many, possibly small or weak, shock
fronts emerges, which is typically the case in applications. Different from
the shock tracking method, it is more commonly used that one solves the
equations by a carefully designed scheme that does not explicitly identify
the shock front. Instead, a shock front appears in terms of a sharp numerical
gradient. This gives a shock capturing approach. The programming is much
simpler for such a scheme. As a numerical scheme always contains artificial
viscosity to stabilize the computation around a shock, such a scheme may
overlook a shock if the numerical dissipation smooths out a relatively flat
gradient. Finite volume method falls into this shock capturing approach.

In the following, we shall prove that the Godunov scheme yields an
entropic solution in the limit of j → 0. As a matter of fact, the Godunov
scheme is in a conservative form, and the Riemann solver implies a local en-
tropy inequality across each cell. We shall show that the entropy inequality
is obtained over the whole domain by the Godunov method.

In numerical computations, the Godunov scheme considers locally each
pair of neighboring cells as a Riemann problem. So far as the CFL condition
is satisfied, the two Riemann problems around each cell do not interact with
each other.

We first divide the domain of interest into uniform grids, as shown in
Fig ??. For each cell, we solve two Riemann problems, for which the entropy
equality (3.51) holds. We define two functions in [xm−1/2, xm+1/2]×[tn, tn+1].
First, we take

ϕ1(x, t) ∼
{

1, (x, t) ∈ [xm−1/2, xm]× [tn, tn+1],

0, elsewhere.
(3.52)

Here we use ∼ to denote that ϕ1 is actually a smoothed function, e.g.
by a standard mollifier in exponential form.

Similarly, we define

ϕ2 ∼
{

1, (x, t) ∈ [xm, xm+1/2]× [tn, tn+1],

0, elsewhere.
(3.53)
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For the first Riemann problem, we know that an entropy inequality holds.∫
R+

∫
R
(ϕ1tη + ϕ1xψ)dxdt+

∫
R
ϕ1(x, 0)η(x, 0)dx ≥ 0. (3.54)

Noticing that ϕ1t ∼ δ(t−tn)−δ(t−tn+1) and ϕ1x ∼ δ(x−xm−1/2)−δ(x−xm),
we have∫ xm

xm−1/2

(η(q(x, tn))− η(q(x, tn+1))dx

+

∫ tn+1

tn
Ψ(q(xm−1/2, t))−Ψ(q(xm, t))dt+

∫
R
ϕ1(x, 0)η(q(x, 0))dx ≥ 0.

(3.55)

The last term drops out unless we discuss the first time step.
Similarly, we have∫ xm+1/2

xm

(η(q(x, tn))− η(q(x, tn+1))dx

+

∫ tn+1

tn
Ψ(q(xm, t))−Ψ(q(xm+1/2, t))dt+

∫
R
ϕ2(x, 0)η(q(x, 0))dx ≥ 0.

(3.56)

Summing the ϕ1 and ϕ2 inequalities together, we obtain∫ xm+1/2

xm−1/2

η(q(x, tn+1)) dx ≤
∫ xm+1/2

xm−1/2

η(q(x, tn)) dx

+

∫ tn+1

tn
Ψ(q(xm−1/2, t)) dt−

∫ tn+1

tn
Ψ(q(xm+1/2, t)) dt.

(3.57)

If n = 0, an additional initial term should be included. Here q(x, t) solves
the equation with a piecewise initial data

q(x, tn) = qnm, xm−1/2 < x < xm+1/2. (3.58)

Because q(x, tn) is constant in the m-th cell, we observe∫ xm+1/2

xm−1/2

η(q(x, tn)) dx = hηnm. (3.59)

On the other hand,
∫ xm+1/2

xm−1/2
η(q(x, tn+1)) dx does not equal to hηn+1

m

because we average q(x, tn+1) to get qn+1
m . However, because η′′(q) ≥ 0, the

Jenssen’s inequality gives

ηn+1
m ≡ η(qn+1

m ) = η

(
1

h

∫ xm+1/2

xm−1/2

q(x, tn+1) dx

)

≤1

h

∫ xm+1/2

xm−1/2

η
(
q(x, tn+1)

)
dx ≤ ηnm − k

h
[Ψm+1/2 −Ψm−1/2],

(3.60)
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where Ψm+1/2 ≡ Ψ(qm+1/2). Using the same argument for the Lax-Wendroff
theorem and taking the limit j → ∞, we may prove that∫

R+

∫
R
(ϕtη + ϕxΨ)dxdt+

∫
R
ϕ(x, 0)η(q(x, 0))dx ≥ 0. (3.61)

In fact, the four conditions in the Lax-Wendroff theorem may be checked
as follows. First, the consistency holds with ϕ̄m+1/2(q̄) = ϕ(q). Secondly,
the formulation (inequality) for (η,Ψ) is in conservative form. Thirdly, it
is stable as TV (η) ≤ C × TV (q) because η is a C2 function in q. Finally,
the convergence holds again due to η ∈ C2 which yields Sη((j)q) → η(q)
provided S(j)q → q.

From Equation (3.61) we know that in the weak sense

∂

∂t
η(q(x, t)) +

∂

∂x
Ψ(q(x, t)) ≤ 0. (3.62)

We conclude that the Godunov method satisfying a local entropy con-
dition (for each cell Riemann problem) guarantees the global entropy con-
dition.

3.5 Nonlinear Stability and Convergence

For a Linear advection equation

ut + cux = 0, (c > 0) (3.63)

we consider a general linear scheme

un+1
m =

∑
j

αju
n
m+j . (3.64)

It may be shown that if αj ≥ 0 (∀j), then this scheme is at most of the
first order accuracy except for the special case of un+1

m = unm−l with ck = lh.

This scheme has some nice properties. First, because αj ≥ 0, it is a
positive scheme. Consequently, it preserves monotonicity, and is hence called
as a monotone scheme. That is, if the profile of un is monotone, so is un+1.
In contrast, a non-monotone scheme usually generates new oscillations.

Secondly, the positive scheme leads to a contractive operator. More
generally, if we have a scheme that gives a solution with

un+1
m = N(unm−1, u

n
m, u

n
m+1). (3.65)

Suppose that it gives another numerical solution

ũn+1
m = N(ũnm−1, ũ

n
m, ũ

n
m+1). (3.66)
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Figure 3.3: (a) Positive scheme preserves monotonicity. (b) Non-monotone
scheme generates new oscillations.

We obtain a contractive operator if it holds that

∥ un+1 − ũn+1 ∥≤∥ un − ũn ∥ . (3.67)

A positive scheme always leads to a contractive operator.

∥ un+1
m − ũn+1

m ∥ =
∑
m

∑
j

|αj(u
n
m+j − ũnm+j)|

≤
∑
m

∑
j

αj |(unm+j − ũnm+j)|

≤
∑

l=m+j

∑
j

αj |(unl − ũnl )|

≤
∑
l

|(unl − ũnl )| =∥ un − ũn ∥ .

Here we have used the fact
∑

j αj ≤ 1, which is a consistency and stability
requirement.

Finally, the previous positive scheme is stable. More generally, for the
nonlinear equation

qt + f(q)x = 0, (3.68)

a nonlinear scheme
qn+1
m = N(qnm−I , · · · , qnm+I), (3.69)
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is a monotone scheme if ∂N/∂qj ≥ 0, ∀j. There appears no new oscillation
in numerical computations with such a scheme. However, it is only of first
order accuracy.

We remark that monotonicity of a scheme is too restrictive. Therefore,
we consider the TV-stability (total variation stability) instead.

We first define L1,T for time T > 0 with norm

∥v∥1,T =

∫ T

0
∥v(, t)∥1dt =

∫ T

0

∫ +∞

−∞
|v(x, t)|dxdt. (3.70)

Then we define a total variation for time T by

TVT (q) = lim
ϵ→0

sup
1

ϵ

∫ T

0

∫ +∞

−∞
|q(x+ϵ, t)−q(x, t)|+ |q(x, t+ϵ)−q(x, t)|dxdt.

(3.71)
It is actually the sum of integrals of the total variations in time and in space.
That is,

TVT (q) =

∫ T

0
TV (q(·, t))dt+

∫ +∞

−∞
TV (q(x, ·))dx. (3.72)

In particular, for a discrete solution, we have

TVT (q
(k)) =

T/k∑
n=0

+∞∑
m=−∞

[
k|qnm+1 − qnm|+ h|qn+1

m − qnm|
]

=

T/k∑
n=0

[kTV (qn) + ∥qn+1 − qn∥L1 ].

(3.73)

It may be shown that

K =
{
q ∈ L1,T : TVT (q) ≤ R, supp(q(·, t)) ⊆ [−M,M ],∀t ∈ [0, T ]

}
(3.74)

is compact, that is, any bounded sequence in this set has a convergent
subsequence in L1,T .

We call a numerical scheme TV-stable if ∃δ > 0, such that ∀(j)k < δ,
numerical solution (j)q lies in K for certain R and M . Here R and M may
depend on the initial data, T and f(q), but not on (j)k.

We note that the existence ofM is guaranteed if initial data has compact
support, due to the finite propagative speed.

Unlike in the linear case, the relation among stability and convergence
is more complicated. By convergence, we usually mean qnm → q(x, t) as
h, k → 0, as discussed before. We notice that there may exist more than one
weak solution q. So we define a solution set W = {q|q is a weak solution}.
In this section, by convergence we mean

dist(Sq,W) ≡ inf
w∈W

∥Sq − w∥1,T → 0 as k → 0. (3.75)

Moreover, for simplicity, we let λ = k
h be fixed.
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Theorem 3.2. A conservative method with Lipschitz continuous numerical
flux is TV-stable, if ∀q0, ∃δ,R > 0, such that TV (qn) ≤ R, ∀k ≤ δ, nk < T .

Proof. We first justify that ∃α > 0 such that ∥qn+1 − qn∥L1 ≤ αk, ∀k <
k0, nk ≤ T.

We employ a conservative method

qn+1
m − qnm = −k

h
(Fn

m+1/2 − Fn
m−1/2). (3.76)

Therefore we have

∥qn+1 − qn∥L1 = k
∑

|Fm+1/2 − Fm−1/2|. (3.77)

Since qn has a compact support and TV (qn) ≤ R, we have |qnm| ≤ R
2 .

Therefore, by the Lipschitz continuity, it holds for certain K that

|Fm+1/2 − Fm−1/2| ≤ K
∑
j

|qnm+j − qnm+j−1|. (3.78)

Here j is the index for the neighboring cells in the stencil. Then we estimate
the L1 norm of qn and compute the total variation of (j)q.

∥qn+1 − qn∥L1 ≤ k ·K
+∞∑

m=−∞

∑
j

|qnm+j − qnm+j−1|

≤ k ·K
∑
j

TV (qn)

≤ k ·K · (number of j ) ·R
≡ αk.

(3.79)

TV ((j)q) =

T/k∑
n=0

[kTV (qn) + ∥qn+1 − qn∥L1 ]

≤
T/k∑
n=0

[k ·R+ αk]

≤ k · (R+ α) · T/k = (R+ α) · T.

(3.80)

Finally, we arrive at the conclusion that (j)q is TV-stable.

Theorem 3.3. let (j)q be obtained by a conservative and consistent scheme
with a Lipschitz continuous numerical flux. If the method is TV-stable, then
it is convergent. That is, dist((j)q,W) → 0 as j → ∞.
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Proof. Assume if it is not true, then there exists ε > 0 and sequences
{(1)q, (2)q, · · · } with (j)k → 0. where

dist(qkj ,W) > ε, ∀j.

Therefore, we can extract a subsequence in the compact set K, which con-
verges to v ∈ K.
Then it holds that

∥(j)q − v∥1,T < ε as j → ∞.

By the Lax-Wendroff theorem, v ∈ W. This contradicts with the assump-
tion. Therefore, the theorem holds.
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Chapter 4

Finite Volume Method for
Nonlinear Systems

4.1 General Setting

In this chapter, we design numerical schemes for either a linear system

qt +Aqx = 0, q ∈ Rd, (4.1)

or a nonlinear system

qt + f(q)x = 0, q ∈ Rd. (4.2)

Same as before, a finite volume method starts with the cell average

Qn
m ≡ 1

h

∫ xm+1/2

xm−1/2

q(x, tn)dx, (4.3)

and a flux function

Fn
m−1/2 ≡

1

k

∫ tn+1

tn
f(q(xm−1/2, t

n))dt. (4.4)

We remark that Q is used here to emphasize that a vector function is
under consideration here.

The exact formula for updating is

Qn+1
m = Qn

m − k

h
(Fn

m+1/2 − Fn
m−1/2). (4.5)

The key issue is then the approximation of the exact flux by a numerical
flux. Typically, we require the CFL condition |λ|max

k
h < 1

2 . Usually this

may be relaxed to |λ|max
k
h < 1.

69
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The approximate flux is usually designed as a function of several cell
averages. The resulted scheme the depends on corresponding cells, which
form a stencil. In a simplest form, two cell averages are used.

Fn
m−1/2 ≡ F(Qn

m−1, Q
n
m) ≡ f(Q⋆

m−1/2(Q
n
m−1, Q

n
m)). (4.6)

We define fluctuations{
A−∆Qn

m−1/2 = f(Q⋆
m−1/2)− f(Qn

m−1),

A+∆Qn
m−1/2 = f(Qn

m)− f(Q⋆
m−1/2).

(4.7)

The scheme then reads

Qn+1
m = Qn

m − k

h
(A+∆Qn

m−1/2 +A−∆Qn
m+1/2). (4.8)

We observe that the increment of Q comes solely from the right-going
waves from the left cell boundary, and the left-going waves from the right
cell boundary.

4.2 Godunov Method for Linear Systems

We develop some basic notions for a system through the Godunov method
for the linear system (4.1). Formally, the finite volume method gives

Qn+1
m −Qn

m

k
+
AQn

m+1/2 −AQn
m−1/2

h
= 0. (4.9)

By hyperbolicity, we know that there is a transform matrix P composed of
row eigenvectors for A, such that

PAP T = Λ = diag(λ1, · · · , λd). (4.10)

Under this transform, the system becomes decoupled. Each of the state
variable is governed by a linear advection equation. Numerically, we define

PQn
m−1/2 = Q̃n

m−1/2, PQn
m−1 = Q̃n

m−1, PQn
m = Q̃n

m. (4.11)

By the Godunov method for each decoupled equation, we obtain

Q̃n+1
m = Q̃n

m − k

h
Λ(Q̃n

m+1/2 − Q̃n
m−1/2). (4.12)

Here, the intermediate state is defined by

Q̃n
m−1/2 =

{
p-th entry in Q̃n

m−1, forλp > 0

p-th entry in Q̃n
m, for λp < 0

= Q̃n
m−1 + {p-th entry in Q̃n

m − Q̃n
m−1 for λp < 0}

= Q̃n
m − {p-th entry in Q̃n

m − Q̃n
m−1 for λp > 0}.

(4.13)
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To simplify the notations, we omit the superscript n for the discussions
on numerical flux.

We define

λ−p = min(0, λp), λ+p = max(0, λp), (4.14)

Λ± = diag(λ±1 , · · · , λ
±
d ), |Λ| = diag(|λ1|, · · · , |λd|), (4.15)

and accordingly

A± = P TΛ±P, |A| = P T |Λ|P. (4.16)

The Godunov flux for the original variable may be computed as follows.

AQm−1/2 = AQm−1 +AP T (Q̃m−1/2 − Q̃m−1)

= AQm−1 + P TPAP T (Q̃m−1/2 − Q̃m−1)

= AQm−1 + P TΛ(Q̃m−1/2 − Q̃m−1)

= AQm−1 +
∑
p

λp(P
T (Q̃m−1/2 − Q̃m−1))p-th entry

= AQm−1 +
∑
p

λ−p w
(p)
m−1/2.

(4.17)

Here Qm −Qm−1 =
∑
w

(p)
m−1/2 is the normal mode decomposition. That is,

w
(p)
m−1/2 is an eigenvector of A corresponding to the eigenvalue λp.

Similarly, we may show that

AQm−1/2 = AQm −
∑
p

λ+p w
(p)
m−1/2. (4.18)

In summary, we can rewrite the Godunov numerical flux as follows.

Fn
m−1/2 = AQm−1 +

d∑
p=1

λ−p w
(p)
m−1/2, (4.19)

or,

Fn
m−1/2 = AQm −

m∑
p=d

λ+p w
(p)
m−1/2. (4.20)

Furthermore, the average of the above two expressions gives

Fm−1/2 =
1

2
(AQm−1 +AQm)− 1

2
|A|(Qm −Qm−1). (4.21)

This can be viewed as the arithmetic average plus a correction term
that stabilizes the method. For the constant-coefficient linear problem this
is simply another way to rewrite the Godunov or upwind flux, but this
form is often seen in extensions to nonlinear problems based on approximate
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Riemann solvers, as discussed in the next section. This formulation is also
useful in studying the numerical dissipation of the upwind method.

Using the flux above we can get the following updating formula.

Qn+1
m = Qm − 1

2

k

h
A(Qm+1 −Qm−1) +

1

2

k

h

d∑
p=1

(|λp|w(p)
m+1/2 − |λp|w(p)

m−1/2).

(4.22)

This is equivalent to

Qn+1
m = Qm− 1

2

k

h
A(Qm+1−Qm−1)+

k

2h
|A|(Qm−1−2Qm+Qm+1). (4.23)

The second term is a central difference, whereas the last term stands
for the viscosity. Notice that the central difference possesses second-order
accuracy, yet lacks of stability. The additional viscous term stabilizes the
scheme and help capturing the entropic shock wave, yet the order of accuracy
is thence reduced. The main goal for developing high resolution schemes is
then to balance the two contradictory demands of stability and accuracy.

4.3 Approximate Riemann Solvers

To apply the Godunov method on a system of equations, we essentially only
need to determine q↓(ql, qr), the state along x/t = 0 based on the Riemann
data ql and qr. We do not need the entire structure, but to compute q↓

we must typically determine something about the full wave structure and
the wave speeds in order to determine where q↓ lies in state space. The
process of solving the Riemann problem is thus often quite expensive, even
in the end we use very little information from this solution to define the
flux. A wide variety of approximate Riemann solvers have been proposed
that can be applied much more cheaply than the exact Riemann solver and
yet give results that in many cases are equally good when used in Godunov
or high-resolution methods.

For given data Qm−1 and Qm, an approximate Riemann solution might
define a function Q̂m−1/2(x/t) that approximates the true similarity solution
to Riemann problem with data Qm−1 and Qm. This function typically
consists of a set of d waves. A p-th family wave corresponds to an increment

vector w
(p)
m−1/2, propagating with a speed s

(p)
m−1/2. That is,

Qm −Qm−1 =

d∑
p=1

w
(p)
m−1/2. (4.24)

To generalize the Godunov method using this function, one may either
approximate the state, or approximate directly the flux. For the first choice,
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we define the numerical flux by Fm−1/2 = f(Q̂↓
m−1/2), where

Q̂↓
m−1/2 = Qm−1 +

∑
sp
m−1/2

<0

wp
m−1/2. (4.25)

This Q̂↓
m−1/2 is the intermediate state along the cell interface. Then we set

A−△Qm−1/2 = f(Q̂↓
m−1/2)−f(Qm−1),A+△Qm−1/2 = f(Qm)−f(Q̂↓

m−1/2).

(4.26)

Alternatively, we may directly use the waves and speeds from the approxi-
mate Riemann solution to define

A−△Qm−1/2 =

d∑
p=1

(s
(p)
m−1/2)

−w
(p)
m−1/2,A

+△Qm−1/2 =

d∑
p=1

(s
(p)
m−1/2)

+w
(p)
m−1/2.

(4.27)

With either definition of the fluxes, we then adopt the updating formula
(4.8). In case of a linear system, the above two approaches are equivalent.
But for a nonlinear system, they are different in general.

4.3.1 Linearized Riemann Solvers

To approximate Riemann solutions, one may replace the nonlinear problem
by a linear one

q̂t + Âm−1/2q̂x = 0. (4.28)

The matrix Âm−1/2 is chosen to be some approximation to f ′(q) valid
in a neighborhood of the data Qm−1 and Qm. There are two requirements
on the matrix Âm−1/2. First, to make the resulted linear system hyperbolic,

Âm−1/2 should be diagonalizable with real eigenvalues. Furthermore, to
make the linearize system compatible with the nonlinear one, we require

Âm−1/2 → f ′(q̄) as Qm−1, Qm → q̄. (4.29)

A natural way to define Âm−1/2 is to take the average of f ′(Qm−1)
and f ′(Qm). But the resulted matrix is usually not diagonalizable, even if
f ′(Qm−1) and f ′(Qm) have real eigenvalues. The other choice is to take
Âm−1/2 = f ′(Q̂m−1/2), where Q̂m−1/2 is a certain average of Qm−1 and Qm.

For instance, one may take Q̂m−1/2 =
1
2(Qm−1+Qm). But this simple choice

does not work properly. If a cell Riemann solution contains only left-going
waves, the correct choice should be Q̂m−1/2 = Qm. A wave view of the
Riemann solution is more suitable in developing linear approximate solvers.
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4.3.2 Roe Linearization

The situation discussed in the previous section is quite complicated. Mathe-
matically speaking, the general Riemann solution for a cell problem includes
all d waves. However, in applications, Roe noticed that the cell Riemann
problems typically have a large jump at most in one wave family. This
greatly ease the problem and motivates the Roe linearization.

Let us consider a shock wave for the p-th family connecting the states

Qm−1 and Qm. This means ||w(j)
m+1/2|| = O(△x) for all other j ̸= p. For

other types of waves, we shall make a discussion later on. To capture pre-

cisely this shock, the linearized system should admit the eigenvector w
(p)
m−1/2

with eigenvalue s
(p)
m−1/2. Together with the Rankine-Hugoniot condition, we

obtain that

Âm−1/2(Qm −Qm−1) = s
(p)
m−1/2(Qm −Qm−1) = f(Qm)− f(Qm−1). (4.30)

It should hold for arbitrary wave family and data that

Âm−1/2(Qm −Qm−1) = f(Qm)− f(Qm−1). (4.31)

Before the construction of the approximate matrix Âm−1/2, we remark
that the corresponding scheme is conservative. Moreover, this also allows a
consistent numerical flux, as it produces Fm−1/2(Q̄, Q̄) = 0 = f(Q̄)− f(Q̄).
Consider the straight-line path parameterized by

q(ξ) = Qm−1 + (Qm −Qm−1)ξ, 0 ≤ ξ ≤ 1. (4.32)

Then f(Qm)− f(Qm−1) can be written as the line integral.

f(Qm)− f(Qm−1) =

[∫ 1

0
∇qf(q(ξ))dξ

]
(Qm −Qm−1). (4.33)

This suggests us to take

Âm−1/2 =

∫ 1

0
∇qf(q(ξ))dξ. (4.34)

This is usually not easy to compute. Roe introduced a parameter vector
z ∈ Rd, which is actually a change of variables, and ease the calculation
for integrals. The inverse transform of z(q) is denoted as q(z). For z, we
integrate along the path

z(ξ) = Zm−1 + (Zm − Zm−1)ξ, (4.35)

where Zm = z(Qm) and Zm−1 = z(Qm−1). Then we get

f(Qm)− f(Qm−1) =

[∫ 1

0
∇zf(q(z(ξ)))dξ

]
(Zm − Zm−1). (4.36)
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Take q(z) as the inverse transform of the variables, we have

Qm −Qm−1 =

[∫ 1

0
∇zq(z(ξ))dξ

]
(Zm − Zm−1). (4.37)

Let

B̂m−1/2 =

∫ 1

0
∇zq(z(ξ))dξ, Ĉm−1/2 =

∫ 1

0
∇zf(q(z(ξ)))dξ. (4.38)

Then we have

Âm−1/2 = Ĉm−1/2B̂
−1
m−1/2. (4.39)

To better illustrate this procedure, we derive the Roe matrix for the
shallow water equations.

ht + (hu)x = 0, (hu)t + (hu2 +
1

2
gh2)x = 0. (4.40)

For the shallow water equations we have

q =

(
h
hu

)
=

(
q1

q2

)
, (4.41)

f(q) =

(
hu

hu2 + 1
2gh

2

)
=

(
q2

q2/q1 + 1
2g(q

1)2

)
, (4.42)

and

∇qf(q) =

(
0 1

−(q2/q1)2 + gq1 2q2/q1

)
=

(
0 1

−u2 + gh 2u

)
. (4.43)

As a parameter vector we choose z = h−1/2q, so that(
z1

z2

)
=

(
h1/2

h1/2u

)
. (4.44)

The inverse transform reads

q(z) =

(
(z1)2

z1z2

)
. (4.45)

We find that

∇zq =

(
2z1 0
z2 z1

)
(4.46)

and

f(q(z)) =

(
z1z2

(z2)2 + 1
2g(z

1)4

)
. (4.47)
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Therefore, the Jacobian matrix is

∇zf =

(
z2 z1

2g(z1)3 2z2

)
. (4.48)

We now set zp = Zp
m−1 + (Zp

m −Zp
m−1)ξ, for p = 1, 2. By direct integration,

we get ∫ 1

0
zp(ξ)dξ =

1

2
(Zp

m−1 + Zp
m) ≡ Z̄p, (4.49)

and ∫ 1

0
(z1(ξ))3dξ =

(Z1
m)4 − (Z1

m−1)
4

4(Z1
m − Z1

m−1)

=
(Z1

m + Z1
m−1)

2
·
(Z1

m)2 + (Z1
m−1)

2

2
= Z̄1

m · h̄,

(4.50)

where

h̄ =
1

2
(hm−1 + hm). (4.51)

Hence we obtain

B̂m−1/2 =

(
2Z̄1 0
Z̄2 Z̄1

)
, Ĉm−1/2 =

(
Z̄2 Z̄1

2gZ̄1h̄ 2Z̄2

)
. (4.52)

So we get

Âm−1/2 =

(
0 1

−(Z̄2/Z̄1)2 + gh̄ 2Z̄2/Z̄1

)
=

(
0 1

−(û)2 + gh̄ 2û

)
.

(4.53)

Here û is the Roe average

û =
Z̄2

Z̄1
=
h
1/2
m−1um−1 + h

1/2
m um

h
1/2
m−1 + h

1/2
m

. (4.54)

The resulted Roe matrix is analogous to the Jacobian matrix to the
original shallow water equations. We remark that the linearized problem
has a linear Jacobian matrix, which varies from cell problem to cell problem,
as it is determined by Qm−1 and Qm.

Moreover, the eigen-structure is also similar to the nonlinear problem.
In fact, we have eigenvalues

λ̂1 = û− ĉ, λ̂2 = û+ ĉ, (4.55)
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and eigen-vectors

r̂1 =

(
1

û− ĉ

)
, r̂2 =

(
1

û+ ĉ.

)
(4.56)

Here the sound speed ĉ = (gh̄)1/2. We find a decomposition for ∆Qm−1/2 =(
∆h
∆m

)
as follows.

Qn
m −Qn

m−1 = α1
m−1/2r̂1 + α2

m−1/2r̂2 ≡ w1
m−1/2 + w2

m−1/2. (4.57)

The coefficients are

α1
m−1/2 =

(û+ ĉ)∆h−∆m

2ĉ
, (4.58)

α2
m−1/2 =

−(û− ĉ)∆h+∆m

2ĉ
. (4.59)

Same as for the linear system, the Roe linearized problem yields a numerical
flux

Fm−1/2 = f(Qm−1) + Â−
m−1/2(Qm −Qm−1)

= f(Qm)− Â+
m−1/2(Qm −Qm−1)

=
1

2
(f(Qm−1) + f(Qm))− 1

2
|Âm−1/2|(Qm −Qm−1).

(4.60)

The finite volume scheme reads

Q̂n+1
m = Q̂n

m − k

h
(Fm+1/2 − Fm−1/2)

= Qn
m − k

h
{[1
2
(f(Qm) + f(Qm+1))−

1

2
|Âm+1/2|(Qm+1 −Qm)]

− [
1

2
(f(Qm) + f(Qm−1))−

1

2
|Âm−1/2|(Qm −Qm−1)]}

= Q̂n
m − k

2h
[f(Qm+1)− f(Qm−1)]

+
k

2h
[|Âm+1/2|(Qm+1 −Qm)− |Âm−1/2|(Qm −Qm−1)].

(4.61)

The last term is a numerical viscosity term ∼ |Â|(Qm+1 − 2Qm +Qm−1).
Now we consider the application of the Roe solver to the nonlinear

problem. Under the assumption of one wave per cell problem, the Roe
linearization actually gives a correct flux if the Rankine-Hugoniot relation
holds. That means, it is correct for a shock or a contact discontinuity.

For a rarefaction wave, we need a careful exploration. Suppose the
cell problem is solved by a rarefaction wave of the p-th family. If the
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rarefaction wave is purely left-going, that is, λp(Qm−1) < λp(Qm) < 0,
then Â+

m−1/2 = 0 and the numerical flux Fm−1/2 = f(Qm)− Â+
m−1/2(Qm −

Qm−1) = f(Qm). So, the linearized system produces the correct flux. Simi-
larly, if 0 < λp(Qm−1) < λp(Qm), then Â−

m−1/2 = 0 and the numerical flux

Fm−1/2 = f(Qm−1) + Â−
m−1/2(Qm −Qm−1) = f(Qm−1). It is again correct.

However, if we have a transonic rarefaction, namely, λp(Qm−1) < 0 <
λp(Qm), the exact solution is a stagnation state Q⋆ that makes λp(Q⋆) = 0.
But with the linearized problem, we have f(Qm) − f(Qm−1) = s(Qm −
Qm−1), with which the intermediate state is Qm if s < 0, and Qm−1 if
s > 0.

Another aspect to see the difficulty is from the point of view of the
numerical viscosity. In a transonic case, λp ∼ 0 which makes |Â|(qm+1 −
2qm + qm−1) a too small viscosity.

E. Harten suggested the following entropy fix. In the previous updat-

ing formula, we replace |Âm−1/2|(Qm − Qm−1) =
d∑

p=1

|Âm−1/2|w
(p)
m−1/2 =

d∑
p=1

|λp|w(p)
m−1/2 by

d∑
p=1

ϕδ(λp)w
(p)
m−1/2, with

ϕδ(λ) =

{
|λ|, if |λ| > δ,
λ2+δ2

2δ , if |λ| < δ.
(4.62)

Here δ is a small positive parameter. In other equivalent forms of the nu-
merical flux, one may replace λ± by{

λ− = 1
2(λ− ϕδ(λ)),

λ+ = 1
2(λ+ ϕδ(λ)).

(4.63)

4.4 High Resolution Methods

In the Godunov method, one makes reconstruction of data at each tn by
piecewise constants. This results in the first order of accuracy. To improve
the accuracy order, we consider better reconstructions.

4.4.1 Limiters for the Linear Advection Equation

We consider a linear reconstruction for a scalar variable.

q̃(x, tn) = qm + σm(x− xm), x ∈ [xm−1/2, xm+1/2]. (4.64)

Noticing that this preserves the cell average qm, we are free to choose the
slope σm.
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For the linear advection equation

qt + cqx = 0, (c > 0), (4.65)

by straight-forward computations, we find that

qn+1
m =

ck

h

(
qm−1 +

1

2
(h− ck)σm−1

)
+

(
1− ck

h

)(
qm − ck

2
σm

)
= qm − ck

h
(qm − qm−1)−

ck

2h
(h− ck)(σm − σm−1). (4.66)

This corresponds to a numerical flux

Fm−1/2 = cqm−1 +
c

2
(h− ck)σm−1. (4.67)

There are various ways to define the slope σm. When the nearest neigh-
boring cells are taken into account, one may adopt either of the following
choices.

Lax-Wendroff : σm =
qm+1 − qm

h
,

Beam-Waming : σm =
qm − qm−1

h
,

Fromm : σm =
qm+1 − qm−1

2h
.

We make some further discussions on the Lax-Wendroff scheme. With
the above choice, the scheme reads

qn+1
m = qm − ck

h
(qm − qm−1)−

ck

2h
(1− ck

h
)(qm+1 − 2qm + qm−1). (4.68)

Under the CFL condition, an interpretation for the Lax-Wendroff scheme
is that it introduces anti-dissipation to the upwind scheme. The upwind
scheme possesses too strong viscosity.

In the mean time, we may rewrite the scheme as

qn+1
m = qm − ck

2h
(qm+1 − qm−1) +

c2k2

2h2
(qm+1 − 2qm + qm−1). (4.69)

The Lax-Wendroff scheme therefore may also be viewed as the centered
difference scheme with additional viscosity. In fact, the more natural way to
derive this scheme is by Taylor expansion, not the linear reconstruction. We
remark that the Taylor expansion derivation is from a finite difference point
of view, whereas the linear reconstruction is from a finite volume point of
view.

We start with the central difference scheme.

qn+1
m − qm

k
+ c

qm+1 − qm−1

2h
= 0. (4.70)
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The temporal term may be expanded as qt+
1
2kqtt+O(k2). The spatial

term is c(qx + h2 qxxx6 ) + o(h2). Therefore, as k ∼ h in the computations,
the order of accuracy is lowered due to the temporal term. From the linear
advection equation, we know that qtt = c2qxx. Therefore, we include an
additional term to correct 1

2kqtt =
1
2c

2kqxx. That is, we design (4.69).
Though the Lax-Wendroff method has second order accuracy, there

are also some disadvantages. If a numerical solution takes speed α for a
sinusoidal wave eiωx, then a wave package eiωxp(x) with long wave envelop
p(x) propagates at group velocity smaller than α. This causes phase error.
A more severe problem for the Lax-Wendroff scheme is overshooting. It is
not a TVD (total-variation-diminishing) scheme.

The three above choices for slope are linear, one may also take nonlinear
ones. The motivation for developing nonlinear slopes comes from the com-
promise between accuracy and stability. To maintain the stability, upwind
or Godunov type of schemes are more appealing, as they produce stable
numerical results, particularly the entropic shock waves. However, they are
only of first order accuracy. The Lax-Wendroff type of schemes are of high
accuracy order. The idea is then to blend these two types of schemes. More
precisely, in the region where the solution is smooth, we adopt the Lax-
Wendroff flux. On the other hand, in the region where the solution likely
has discontinuity, we use the upwind flux. In another word, we introduce a
switch that turns on and off according to the solution profile. The solution
profile is actually identified by discrete gradient. When this is done, we call
a scheme is high resolution method, noticing the difference from the high
order of accuracy.

We may realize the idea of switch by adopting a minmod limiter. In the
reconstruction of data, the three above choices do not make much difference
in a smooth region. On the other hand, near a sharp gradient, it is appealing
to use the information from a more smooth neighboring cell to form a linear
profile in a cell. This leads to

σm = minmod

(
qm − qm−1

h
,
qm+1 − qm

h

)
, (4.71)

where the function

minmod(a, b) =


a, ab > 0 and |a| ≤ |b|,
b, ab > 0 and |a| > |b|,
0, ab < 0.

(4.72)

One may use an MC (monotonized center-difference) limiter as well.

σm = minmod

(
qm+1 − qm−1

2h
,
qm − qm−1

h
,
qm+1 − qm

h

)
. (4.73)

With these nonlinear slope limiters, the reconstructed data becomes
smoother and preserves monotonicity.
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The numerical flux formulation is determined for a given slope limiter.
Consider the linear advection equation for both c ≥ 0 and c < 0, we may
find the flux function with linear reconstruction.

Fm−1/2 =

{
cqm−1 +

c
2(h− ck)σm−1, c ≥ 0,

cqm − c
2(h− ck)σm, c < 0.

(4.74)

With ∆qm−1/2 = qm − qm−1, we rewrite the flux function as

Fm−1/2 = c−qm + c+qm−1 +
|c|
2

(
1− ck

h

)
δm−1/2. (4.75)

where

δm−1/2 =

{
hσm−1, c ≥ 0,
hσm, c < 0,

≡ ϕ(θm−1/2)∆qm−1/2, (4.76)

θm−1/2 =
∆qI−1/2

∆qm−1/2
, I =

{
m− 1, c ≥ 0,
m+ 1, c < 0.

(4.77)

We call ϕ(θ) a flux limiter. Same as the slope limiter, the flux limiter
also has many different choices, both linear and nonlinear.

Linear flux limiters include

upwind: ϕ(θ) = 0, (4.78)

Lax-Wendroff: ϕ(θ) = 1, (4.79)

Beam-Warming: ϕ(θ) = θ, (4.80)

Fromm: ϕ(θ) =
1 + θ

2
. (4.81)

Nonlinear flux limiters include

minmod: ϕ(θ) = minmod(1, θ), (4.82)

MC: ϕ(θ) = max

(
0,min

(
1 + θ

2
, 2, 2θ

))
. (4.83)

To select a flux limiter, we usually require it to be TVD. The following
Harten’s theorem gives a sufficient condition.

Theorem 4.1. (Harten) A scheme

qn+1
m = qm − Cm−1(qm − qm−1) +Dm(qm+1 − qm), (4.84)

is TVD, if

Cm ≥ 0, Dm ≥ 0, Cm +Dm ≤ 1, ∀m. (4.85)
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Proof. From the scheme, we have

qn+1
m+1 − qn+1

m =(1− Cm −Dm)(qm+1 − qm)

+Dm+1(qm+2 − qm+1) + Cm−1(qm − qm−1).
(4.86)

Then the total variation may be estimated as follows.

1

h
TV (qn+1) =

∑
m

|qn+1
m+1 − qn+1

m |

≤
∑
m

(1− Cm −Dm)|qm+1 − qm|

+Dm+1|qm+2 − qm+1|+ Cm−1|qm − qm−1|

=
∑
m

[(1− Cm −Dm) + Cm +Dm]|qm+1 − qm|

=
1

h
TV (qn).

(4.87)

Consider c > 0, and let γ = ck/h. The scheme is

qn+1
m =qm − γ(qm − qm−1)−

γ(1− γ)

2
[ϕ(θm+1/2)(qm+1 − qm)− ϕ(θm−1/2)(qm − qm−1)].

(4.88)

Under this circumstance, we have

Cm−1 = γ +
γ(1− γ)

2

[
ϕ(θm+1/2)

θm+1/2
− ϕ(θm−1/2)

]
, Dn

m = 0. (4.89)

According to the Harten’s theorem, we take 0 ≤ Cm−1 ≤ 1. Due to the CFL
condition 0 ≤ γ ≤ 1, it becomes∣∣∣∣ϕ(θ1)θ1

− ϕ(θ2)

∣∣∣∣ ≤ 2. (4.90)

It is then enough to have

0 ≤ ϕ(θ)

θ
≤ minmod

(
2,

2

θ

)
. (4.91)

This region for ϕ(θ) is called the TVD region, see Figure 4.1. The
upwind scheme ϕ(θ) = 0 lies in this region. The Lax-Wendroff scheme,
the Beam-Warming scheme, and the Fromm’s scheme are not completely
contained in this region, therefore not TVD. The minmod limiter lies in the
TVD region. We further remark that Sweby suggested that the flux limiter
should be a convex combination of ϕ(θ) = 1 and ϕ(θ) = θ.
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2

L-W

B-W

Fromm

Figure 4.1: TVD choices for flux limiters.

4.5 Limiters for Systems

Similar to the scalar equations, a piecewise linear reconstruction with down-
wind slope for a linear system leads to the Lax-Wendroff scheme.

Consider a linear system

qt +Aqx = 0, q ∈ Rd. (4.92)

The Lax-Wendroff scheme reads

Qn+1
m = Qm − k

2h
A (Qm+1 −Qm−1) +

1

2

(
k

h

)2

A2 (Qm+1 − 2Qm +Qm−1) .

(4.93)
The numerical flux function is

Fm−1/2 =
1

2
A (Qm +Qm−1)−

k

2h
A2 (Qm −Qm−1) . (4.94)

The flux function can be decomposed into two parts, i.e., the flux func-
tion of upwind scheme (low order), and a high order correction.

Fm−1/2 =
1

2
A (Qm +Qm−1)−

k

2h
A2 (Qm −Qm−1)

= A−Qm +A+Qm−1 +
1

2
|A|
(
I − k

h
|A|
)
(Qm −Qm−1) .

(4.95)

The first term is the upwind flux function, and the second one the high order
correction.

The general form for a high resolution method using a flux limiter
φm−1/2 may be expressed as follows.

Fm−1/2 = FL(qm−1, qm) + φm−1/2 [FH(qm−1, qm)− FL(qm−1, qm)] . (4.96)

Here FL represents flux function with low order of accuracy, and FH is the
flux function with high accuracy. In a smooth region, essentially we have
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φm−1/2 ≈ 1, and hence Fm−1/2 ≈ FH . In a region with sharp numerical
gradient, we have φm−1/2 ≈ 0, which leads to Fn

m−1/2 ≈ FL.

To develop flux limiters for the linear system, we diagonalize the Ja-
cobian matrix by R = (r(1), · · · , r(d), to get RTAR = Λ. Here Λ =
diag(λ1, · · · , λd). The new variable q̃ = RT q satisfies the decoupled linear
equation.

q̃t + Λq̃x = 0. (4.97)

For q̃, the flux function is

F̃n
m−1/2 = Λ−Q̃m + Λ+Q̃m−1 +

1

2
|Λ|
(
1− k

h
|Λ|
)
ϕ
(
θm−1/2

)
∆Q̃m−1/2.

(4.98)

Here the p-th entry of the vector ∆Q̃m−1/2 = Q̃m − Q̃m−1 = RT∆Qm−1/2

is α̃
(p)
m−1/2. The limiter ϕ

(
θm−1/2

)
denotes a diagonal matrix, composed by

slope limiters ϕ

 α̃
(p)
I−1/2

α̃
(p)
m−1/2

. We let α
(p)
m−1/2 = α̃

(p)
m−1/2ϕ

 α̃
(p)
I−1/2

α̃
(p)
m−1/2

.

Then back to the original variable q, the flux function is

Fm−1/2 = RF̃m−1/2

= A−Qm +A+Qm−1 +
1

2
R|Λ|

(
1− k

h
|Λ|
)
ϕ
(
θm−1/2

)
∆Q̃m−1/2

= A−Qm +A+Qm−1 +
1

2
R|Λ|

(
1− k

h
|Λ|
) ...

α
(p)
m−1/2

...


= A−Qm +A+Qm−1 +

1

2

d∑
p=1

|λp|
(
1− k

h
|λp|
)
α
(p)
m−1/2r

(p)

= A−Qm +A+Qm−1 +
1

2

d∑
p=1

|λp|
(
1− k

h
|λp|
)
w

(p)
m−1/2.

(4.99)

Here the wave decomposition for ∆Qm−1/2 gives w
(p)
m−1/2 = α

(p)
m−1/2r

(p).

Next, we consider a nonlinear system

qt + f(q)x = 0. (4.100)

For each cell problem, we define Âm−1/2 by Roe linearization. We then
apply the limiters for the approximate linear equations.

qt + Âm−1/2qx = 0. (4.101)
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We decompose the flux difference into left-going and right-going waves. That
is,

f(Qm)− f(Qm−1) = Am−1/2∆Qm−1/2

= A−
m−1/2∆Qm−1/2 +A+

m−1/2∆Qm−1/2.
(4.102)

The first order upwind scheme reads

Qn+1
m = Qm − k

h
(A−∆Qm+1/2 +A+∆Qm−1/2), (4.103)

A−∆Qm+1/2 =
∑
p

(s
(p)
m+1/2)

−w
(p)
m+1/2, (4.104)

A+∆Qm−1/2 =
∑
p

(s
(p)
m−1/2)

+w
(p)
m−1/2. (4.105)

We include further a correction term to obtain a high resolution scheme.

Qn+1
m = Qm − k

h
(A−∆Qm+1/2 +A+∆Qm−1/2)−

k

h
(F c

m+1/2 − F c
m−1/2).

(4.106)
Here we take the correction

F c
m−1/2 =

1

2

∑
p

|s(p)m−1/2|(1−
k

h
|s(p)m−1/2|)w

(p)
m−1/2. (4.107)

Here s
(p)
m−1/2 may be chosen as the p-th eigenvalue obtained from the Roe

linearization, possibly with an entropy fix to capture the correct rarefaction.

The wave limiter w
(p)
m−1/2 is computed in the following way. First, from

the decomposition of ∆Qm−1/2 we obtain the p-th component w̃
(p)
m−1/2 =

α̃
(p)
m−1/2r

(p)
m−1/2. Next, we compute

θ
(p)
m−1/2 ≡

w̃
(p)
I−1/2 · w̃

(p)
m−1/2

w̃
(p)
m−1/2 · w̃

(p)
m−1/2

. (4.108)

Then we define
w

(p)
m−1/2 = α̃

(p)
m−1/2r

(p)φ(θ
(p)
m−1/2). (4.109)

4.6 Some Other Approaches: Relaxation Method
and the Glimm Scheme

During the development of numerical algorithms for hyperbolic conservation
laws, there are some other approaches besides the eventually dominant finite
volume method with Roe linearization and flux limiter. Here we briefly
describe two of them, the relaxation method and the Glimm scheme.
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4.6.1 Relaxation Method

We illustrate the method with a scalar equation

ut + f(u)x = 0. (4.110)

Consider a system with a small parameter ϵ > 0, and a artificial wave
speed λ. {

uϵt + vϵx = 0,
vϵt + λ2uϵx = 1

ϵ (f(u
ϵ)− vϵ).

(4.111)

When ϵ → 0, we expect that the source term in the second equation
should not be singular, hence f(uϵ)−vϵ → 0. Substituting this into the first
equation, we recover the original equation.

This may be explained by a formal theory of Chapman-Enskog expan-
sion.

0 = uϵt + vϵx

= uϵt +
(
f(uϵ)− ϵ(vϵt + λ2uϵx)

)
x

= uϵt + f(uϵ)x − ϵ
(
f(uϵ)t + λ2uϵx

)
x
+O(ϵ2)

= uϵt + f(uϵ)x − ϵ
(
f ′(uϵ)uϵt + λ2uϵx

)
x
+O(ϵ2)

= uϵt + f(uϵ)x − ϵ
(
f ′(uϵ)(−vϵx) + λ2uϵx

)
x
+O(ϵ2)

= uϵt + f(uϵ)x − ϵ
(
f ′(uϵ)(−f(uϵ)x) + λ2uϵx

)
x
+O(ϵ2)

= uϵt + f(uϵ)x − ϵ
[(
λ2 − f ′(uϵ)2

)
uϵx
]
x
+O(ϵ2).

(4.112)

From this expansion, we observed that under a subcharacteristic con-
dition λ > |f ′(u)|, the relaxation method yields a viscous term on the order
of ϵ. As a matter of fact, this is a over simplified version for the derivation
of the macroscopic Euler equations or the Navier-Stokes equations from the
microscopic Boltzmann equation.

To solve this model numerically, we adopt the splitting technique. That
is, for a cell problem, we first compute a wave propagation step{

ũϵt + ṽϵx = 0,
ṽϵt + λ2ũϵx = 0,

(4.113)

ũϵ(x, tn) = unm, ṽϵ(x, tn) = vnm.

We obtain ũϵ(x, tn+1), ṽϵ(x, tn+1). Then we make a relaxation step{
ūϵt = 0,
v̄ϵt =

1
ϵ (f(ū

ϵ)− v̄ϵ) ,
(4.114)

ūϵ(x, tn) = ũϵ(x, tn+1), v̄ϵ(x, tn) = ṽϵ(x, tn+1).

Then we define

uϵ(x, tn+1) = ūϵ(x, tn+1), vϵ(x, tn+1) = v̄ϵ(x, tn+1). (4.115)
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In the second step, ϵ→ 0 leads to a set of stiff ordinary differential equations.
Due to the special structure, it can be exactly solved. That is,

ūϵ(x, t) = ũϵ(x, tn+1), (4.116)

and

v̄ϵ(x, t) = (1− e−t/ϵ)f(ūϵ) + e−t/ϵv̄ϵ(tn). (4.117)

In particular, we may even take ϵ → 0+ in this step to get v̄ϵ(x, tn+1) →
f(ūϵ(x, tn)). This leads to a relaxed scheme. Notice that the relaxed scheme
still possesses viscosity due to the splitting.

4.6.2 Glimm Scheme

Consider again the scalar equation as an example with f ′′(u) > 0. We use a
staggered grid to solve the problem. Suppose that we start with a uniformly
distributed grid points xm. We regard [xm−1, xm+1] with oddm as a cell, and
the initial data is a constant in this cell. With a time step size k that satisfies
the stability condition, we have the exact Riemann solution u(x, t) (t ∈
[t0, t1)) for each pair of neighboring cells. Moreover, the waves are confined
within [xm, xm+2] for the cell pair [xm−1, xm+1] and [xm+1, xm+3]. Choose
a random number a1 ∈ [0, 1]. We set ym = xm + 2a1h ∈ [xm, xm+2] for
each odd m. We further let u(x, t1) = u(ym, t

0) for x ∈ [xm, xm+2] with
odd m. This forms a piecewise constant data at t1, and the cell for this
layer is [xm−1, xm+1] with even m. Taking the same procedure with another
random number a2 ∈ [0, 1], we may solve for the time step [t1, t2]. Noticing
that actually the solution u is bounded by the initial data, the time step size
may be chosen as a uniform one. Therefore, we may repeat the procedure
and obtain a numerical solution.

This random choice of data produces a convergent numerical solution.
The scheme is introduced by J. Glimm. Proposed as a numerical scheme,
this method is not popular for numerical computations. However, it is im-
portant for proving the existence of solution to hyperbolic conservation laws.
Actually it gave one of the first general proof. Furthermore, partly based on
this idea, A. Bressan developed one of the most general theory for nonlinear
hyperbolic systems.

4.7 Multidimensional Hyperbolic Problems

Most important applications require numerical computations in multiple di-
mensions. Fortunately and unfortunately, the theory for multidimensional
hyperbolic problems is not complete. This brings challenges as well as op-
portunities to numerical studies.
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4.7.1 Hyperbolicity

We start with a definition of hyperbolic problem in two space dimensions.
It may be readily generalized to multiple dimensions.

Definition 4.1. The system qt + f(q)x + g(q)y = 0 is strongly hyperbolic
if ∀n⃗, the Jacobian matrix (∇qf(q),∇qg(q)) · n⃗ is diagnalizable with real
eigenvalues. That is, the system is hyperbolic in every direction.

The p-system in two space dimensions is hyperbolic.
ρt + (ρu)x + (ρv)y = 0,
(ρu)t + (ρu2 + p)x + (ρuv)y = 0,
(ρv)t + (ρuv)x + (ρv2 + p)y = 0.

(4.118)

In any direction n⃗, we have{
ρt +

∂ρ(u⃗·n⃗)
∂((x,y)·n⃗) = 0,

(ρu⃗ · n⃗)t + ∂(ρ(u⃗·n⃗)2+p)
∂((x,y)·n⃗) = 0.

(4.119)

This reflects the fact that the physical laws of conservation are coordinate
independent.

The directional version of p-system leads to

q =

 ρ
ρu
ρv

 , f(q) =

 ρu
ρu2 + p
ρuv

 =

 q2

(q2)2/q1 + p(q1)
q2q3/q1

 ,

g(q) =

 q3

q2q3/q
′

(q3)2/q1 + p(q1)

 .

(4.120)

The Jacobian matrices are

∇qf(q) =

 0 1 0

−u2 + p
′
(ρ) 2u 0

−uv v u

 , ∇qg(q) =

 0 0 1
−uv v u

−v2 + p
′
(ρ) 0 2v

 .
(4.121)

Then we obtain the Jacobian matrix along n⃗ is

(∇qf(q),∇qg(q)) · n⃗

=

 0 nx ny
nx(−u2 + p

′
(ρ))− nyuv 2unx + vny uny

−nxuv + ny(−v2 + p
′
(ρ)) vnx unx + 2vny

 . (4.122)

It has three distinct eigenvalues, unx + vny ± c0, unx + vny, where c0 =√
p′(ρ0) is the sound speed.
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4.7.2 Numerical Methods

A most straightforward way to solve a multidimensional problem is by
dimension splitting. That is, for one step computation of the equation
qt + f(q)x + g(q)y = 0, we perform two sub-steps.{

qt + f(q)x = 0 x-sweep,
qt + g(q)y = 0 y-sweep.

(4.123)

More precisely, we take

q⋆mj = qnmj −
k

h
(Fn

m+1/2,j − Fn
m−1/2,j), (4.124)

qn+1
mj = q⋆mj −

k

h
(G⋆

m,j+1/2 −G⋆
m,j−1/2). (4.125)

One may adopt the Strang splitting to reach second order splitting accuracy.

q⋆mj = qnmj −
k

2h
(Fn

m+1/2,j − Fn
m−1/2,j), (4.126)

q⋆⋆mj = q⋆mj −
k

h
(G⋆

m,j+1/2 −G⋆
m,j−1/2), (4.127)

qn+1
mj = q⋆⋆mj −

k

2h
(F ⋆⋆

m+1/2,j − F ⋆⋆
m−1/2,j). (4.128)

There is a second approach. Consider a semi-discrete system

d

dt
qmj(t) =− 1

∆x
(Fm+1/2,j(q)− Fm−1/2,j(q))

− 1

∆y
(Gm,j+1/2(q)−Gm,j−1/2(q)).

(4.129)

This is then solved by the Runge-Kutta method.
A third approach starts with the finite volume methodology. It is a

fully discrete flux difference method. First, we have the exact formula after
integration by parts.∫∫

Ωmj

d

dt
qmj(t)

=

∫ yj+1/2

yj−1/2

f(q(xm−1/2, y, t))dy −
∫ yj+1/2

yj−1/2

f(q(xm+1/2, y, t))dy

+

∫ xm+1/2

xm−1/2

g(q(x, yj−1/2, t))dx−
∫ xm+1/2

xm−1/2

g(q(x, yj+1/2, t))dx.

(4.130)

Finite volume scheme reads

qn+1
mj = qnmj −

k

hx
(Fn

m+1/2,j −Fn
m−1/2,j)−

k

hy
(Gn

m,j+1/2−Gn
m,j−1/2), (4.131)
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with numerical fluxes

Fn
m−1/2,j ≈

1

khy

∫ tn+1

tn

∫ yj+1/2

yj−1/2

f(q(xm−1/2, y, t))dydt, (4.132)

Gn
m,j−1/2 ≈

1

khx

∫ tn+1

tn

∫ xm+1/2

xm−1/2

g(q(x, yj−1/2, t))dxdt. (4.133)

The design of numerical fluxes is similar to that in one dimension.

Assignments

1. Perform the von Neumann analysis to the Lax-Friedrichs scheme to
study its stability.

2. Find the modified equation for the Lax-Friedrichs scheme to study its
stability.

3. Perform numerical experiments with the schemes (3.17) and (3.20),
respectively for initial data

u(x, 0) =

{
2, x < 0,
1, x > 0,

(4.134)

Compare the numerical results. Also compare the numerical results
for initial data

u(x, 0) =

{
1, x < 0,
2, x > 0.

(4.135)

4. Prove the Jensen’s inequality

η
′′
(q) ≥ 0 ⇒ η(

1

h

∫
Cm

q̃n(x)dx) ≤ 1

h

∫
Cm

η(q̃n(x))dx. (4.136)

Construct an example to show the inequality does not hold if η
′′
(q) ≥ 0

does not hold.

5. Consider a scheme for the linear advection equation

un+1
m =

∑
j

αju
n
m+j . (4.137)

Show that if αj ≥ 0 (∀j), then this scheme is at most of the first order
accuracy except for the special case of un+1

m = unm−l with ck = lh.

6. Prove
AQm−1/2 = AQm −

∑
p

λ+p w
(p)
m−1/2. (4.138)
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7. Compute with the Roe linearization for the inviscid Burgers’ equation

ut + (u
2

2 )x = 0, with initial data u(x, 0) =

{
−1, x < 0,
2, x > 0.

Compare

the results with and without the Harten’s entropy fix.

8. Derive and compute with the Roe linearization for the polytropic Euler
equations, with an initial data (ρ, u)(x, 0) = (1, exp(−25x2)).

9. For the shallow water equations, derive the numerical flux with min-
mod limiter.

10. Compute for the shallow water equations with initial data

(h, u)(x, 0) =

{
(1, 2), x < 0,
(5, 0), x > 0.

(4.139)
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Chapter 5

Introduction to Finite
Element Method

5.1 Sobolev Spaces

As we have learned for the hyperbolic equations, classical solutions may not
exist in general. This holds true for another type of equations, namely, el-
liptic partial differential equations. To investigate this type of equations,
the most appropriate space of functions falls in to the category of Sobolev s-
paces. We shall confine ourselves to a special sub-category of spaces, namely,
the Hilbert spaces.

We consider Ω ∈ Rn a bounded open set with piecewise smooth bound-
ary. Moreover, a cone condition is assumed in most applications to elliptic
partial differential equations. That is, at any point of ∂Ω, a cone with
positive inner angle is locally contained within Ω.

A Hilbert space is a complete space with inner product. Depending on
the inner product defined, we have a sequence of Hilbert spaces for functions.

We start with H0(Ω), which is actually L2(Ω). We define an inner
product

(u, v)0 =

∫
Ω
u(x)v(x)dx. (5.1)

This leads to an L2 norm ∥ u ∥0=
√

(u, u)0 =
∫
Ω u(x)

2dx. The L2(Ω)
is the collection of all functions with finite L2-norm.

We notice that a function in L2(Ω) may not be differentiable in general.
So, we define a weak derivative instead. For this purpose, we define C∞(Ω)
the smooth function space, and C∞

0 (Ω) the subspace with each element
taking a compact support. Because Ω is open, and a compact set in R
must be bounded closed, we know that a function in C∞

0 (Ω) must vanish at
boundary.

For u ∈ L2, we define its weak derivative v = ∂αu ∈ L2, where α is a

93
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multiple index, if

(ϕ, v)0 = (−1)|α|(∂αϕ, u)0, (5.2)

∀ϕ ∈ C∞
0 (Ω). We further define an inner product and corresponding norm

as follows.

(u, v)m =

∫
Ω

∑
|α|≤m

(∂αu, ∂αv)dx, ∥ u ∥m=
√

(u, u)m. (5.3)

A semi-norm may be defined by

|u|m =

√ ∑
|α|=m

∥ ∂αu ∥20. (5.4)

The Hilbert space is defined as Hm(Ω) = {u ∈ L2(Ω)| ∥ u ∥m< +∞}.
The completeness may be verified easily. It is possible to show that C∞(Ω)∩
Hm(Ω) is dense in Hm(Ω), and Hm(Ω) is the completion of C∞(Ω)∩Hm(Ω)
under the Hm norm.

In a similar way, we define Hm
0 (Ω) the completion of C∞

0 (Ω). There are
two sequences of inclusion.

L2(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ · · · , (5.5)

H0
0 (Ω) ⊃ H1

0 (Ω) ⊃ H2
0 (Ω) ⊃ · · · . (5.6)

In particular, norm and the seminorm ||m are equivalent in Hm
0 (Ω) by

the following result based on the Poincare-Friedrichs inequality.

|v|m ≤∥ v ∥m≤ (1 + s)m|v|m, ∀v ∈ Hm
0 (Ω). (5.7)

Here we assume that Ω is contained in a cube with side with length s.

A key fact in Sobolev spaces is the compact imbedding. For m > 0
and Ω a Lipschitiz domain with cone condition, Hm+1(Ω) ↪→ Hm(Ω) is a
compact imbedding, namely, a subset which is bounded inHm+1 is relatively
compact in Hm. The compact imbedding facilitates theoretical studies of
elliptic and parabolic partial differential equations, such as the existence and
regularity of the solutions.

5.2 Variational Formulation of Second-order Ellip-
tic Equations

A simple example of elliptic partial differential equation is the Laplace e-
quation

∆u = uxx + uyy = 0, (x, y) ∈ Ω. (5.8)
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Notice that a certain boundary condition is necessary.
More generally, we may consider an elliptic operator

Lu :=

d∑
i,k=1

aik(x)uxixk
, (5.9)

where the coefficient square matrix {aik} is positive definite. Moreover, if
∃α > 0, ∀x ∈ Ω, it holds that minλ ≥ α, we call L uniformly elliptic. For
such an operator, some features are as follows.

• Minimum principle.
If Lu = f ≤ 0, then u attains its minimum on ∂Ω.

• Comparison principle.
If two classical solutions u, v ∈ C2(Ω) ∩ C0(Ω̄) satisfy Lu ≤ Lv in Ω,
and u ≥ v on ∂Ω, then it holds that u ≥ v in Ω.

• Continuous dependency on the boundary data.
For two solutions of Lui = f (i = 1, 2) with different boundary data,
it holds that sup

x∈Ω
|u1(x)− u2(x)| = sup

z∈∂Ω
|u1(z)− u2(z)|.

• Continuous dependency on the righthand side.
∀u ∈ C2(Ω) ∩ C0(Ω̄), it holds that |u(x)| ≤ sup

∂Ω
|u(z)|+ C sup

∂Ω
|Lu(z)|.

• Elliptic operator with Helmholtz term.
For operator Lu := −

∑
aik(x)uxixk

+ c(x)u with c(x) ≥ 0, if Lu ≤ 0,
then sup

x∈Ω
u(x) ≤ max{0, sup

∂Ω
u(z)}

• Elliptic operator in divergence form.

For operator Lu = −
∑
i,k

∂i(aik∂ku) + a0u, with (aik), a0(x) ≥ 0, we

may take an associated bilinear form as follows.

a(u, v) =

∫
Ω
(
∑
i,k

aik∂iu∂kv + a0uv)dx. (5.10)

As a classical solution does not exist in general, we consider a weak
solution instead.

Definition 5.1. u ∈ H1
0 (Ω) is a weak solution of Lu = f in Ω and u = 0

on ∂Ω if
a(u, v) = (f, v)0,∀v ∈ H1

0 (Ω). (5.11)

The finite element method starts with transforming the partial differen-
tial equation into a minimization problem. We have the following theorem
that relates an equation with a minimization for a bilinear form. In a sense,
it is similar to the Fermat’s theorem in calculus, which states that an ex-
tremum point must be a critical point.
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Theorem 5.1. (Characterization theorem) Let V be a linear space, a :
V × V → R be a symmetric positive bilinear form, and l : V → R be a
linear functional denoted as ⟨l, v⟩ = l(v). Then

J(v) =
1

2
a(v, v)− < l, v > (5.12)

attains its minimum over V at u if and only if

a(u, v) =< l, v >, ∀v ∈ V. (5.13)

Moreover, there is at most one solution.

Proof. Take u, v ∈ V, t ∈ R, we compute

J(u+ tv) =
1

2
a(u+ tv, u+ tv)− < l, u+ tv >

= J(u) + t[a(u, v)− < l, v >] +
1

2
t2a(v, v).

(5.14)

On one hand, if a(u, v) =< l, v >, ∀v ∈ V , then we have

J(u+ v) = J(u) +
1

2
t2a(v, v) > J(u), ∀v ∈ V and v ̸= 0. (5.15)

On the other hand, if J has a minimum at u, then ∀v, we consider the
function t 7−→ J(u+ tv). By the Fermat’s theorem we have

d

dt
J(u+ tv)|t=0 = a(u, v)− < l, v >= 0. (5.16)

Finally, we prove the uniqueness. If two solutions satisfy a(u1, v) =<
l, v >= a(u2, v), then J(u1) and J(u2) are both minimum. So J(u1 + (u2 −
u1)) > J(u1) leads to a contradiction.

The theorem implies that every classical solution of the boundary values
problem  −

∑
i,k

∂i(aik∂ku) + a0u = f, in Ω,

u = 0, on ∂Ω,

(5.17)

is a solution of the variational problem v ∈ C2(Ω) ∩ C0(Ω̄) with v|∂Ω = 0.

J(v) =

∫
Ω

[
1

2

∑
aik∂iv∂kv +

1

2
a0v

2 − fv

]
dx→ min!. (5.18)

The following Lax-Milgram theorem is key to the understanding of el-
liptic partial differential equations.



5.2. VARIATIONAL FORMULATION 97

Theorem 5.2. (Lax-Milgram) Let V be a closed convex set in a Hilbert
space H, and a : H × H → R be an elliptic bilinear form. Then ∀l ∈ H ′

(dual space of H), the variational problem

J(v) =
1

2
a(v, v)− < l, v >→ min! (5.19)

has a unique solution in V .

Proof. We claim that J is bounded from below. As a matter of fact, due to
the ellipticity and the definition of dual space, we have

J(v) ≥ 1

2
α ∥ v ∥2 − ∥ l ∥∥ v ∥= 1

2α
(α ∥ v ∥ − ∥ l ∥)2 − ∥ l ∥2

2α
≥ −∥ l ∥2

2α
.

(5.20)

Therefore, there exists inf J(v) = C1. Let (vn) be a minimizing sequence.
We derive

α ∥ vn − vm ∥2 ≤ a(vn − vm, vn − vm)

= 2a(vn, vn) + 2a(vm, vm)− a(vn + vm, vn + vm)

= 4J(vn) + 4J(vm)− 8J(
vn + vm

2
)

≤ 4J(vn) + 4J(vm)− 8C1.

(5.21)

Here we have made usage of the convexity of V to derive that vn+vm
2 ∈ V .

The above term tends to 0 as n,m→ ∞. Now combining the facts that (vn)
is A Cauchy sequence, H is complete, and V is closed, we conclude that

u = lim
n→∞

vn ∈ V. (5.22)

Furthermore, as J is continuous, J(u) = lim
n→∞

J(vn) = C1 = inf
v∈V

J(v).

Next, we prove the uniqueness. To this end, assuming that u1, u2 are
both solutions, we may construct a sequence (u1, u2, u1, u2, · · · ). It is obvi-
ously a minimizing sequence. It then must be a Cauchy sequence, and hence
u1 = u2.

We remark that the difference between the characterization theorem
and the Lax-Milgram lies in the difference of the space. In the previous one,
the whole Hilbert space is adopted. On the other hand, the Lax-Milgram
theorem uses only a convex closed subset.

Theorem 5.3. (Existence) Let L be a second order uniformly elliptic oper-
ator, with a0, aij ∈ L∞(Ω), a0 ≥ 0, f ∈ L2(Ω). The boundary value problem{

Lu = f, in Ω,
u = 0, on ∂Ω,

(5.23)
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admits a weak solution in H1
0 (Ω). It is a minimum of the variational problem

1

2
a(v, v)− (f, v)0 → min! over H1

0 (Ω). (5.24)

Proof. It is possible to show that∣∣∣∣∣∣
∑
i,k

∫
aik∂iu∂kvdx

∣∣∣∣∣∣ ≤ C
∑
i,k

∫
|∂iu∂kv|dx ≤ C|u|1|v|1. (5.25)

Furthermore, we have ∣∣∣∣∫ a0uvdx

∣∣∣∣ ≤ C ∥ u ∥0∥ v ∥0 . (5.26)

These lead to

a(u, v) ≤ C ∥ u ∥1∥ v ∥1 . (5.27)

For any v ∈ C1, it holds that∑
aik∂iv∂kv ≥ α

∑
(∂iv)

2. (5.28)

Therefore, for any v ∈ H1, it holds that

a(v, v) ≥ α|v|21. (5.29)

From the Poincare-Friedrichs inequality, we know that

|v|1 ∼∥ v ∥1 . (5.30)

Combining (5.27)-(5.30), we find that a is an elliptic bilinear form on H1
0 (Ω).

Noticing that f ∈ L2 ⊂ H ′, we conclude the existence and uniqueness of the
weak solution from the Lax-Milgram theorem.

We remark that the above results may be extended to non-homogeneous
Dirichlet boundary value problem. Consider{

Lu = f, in Ω,
u = g, on ∂Ω.

(5.31)

We assume ∃u0, such that Lu0 exists, and u0|∂Ω = g. Now let w = u− u0,
then w solves a homogeneous boundary value problem{

Lw = f − Lu0 ≡ f1, in Ω,
w = 0, on ∂Ω.

(5.32)
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5.3 Neumann Boundary Value Problem

Suppose that ν = (νi) is the out-normal on the boundary Γ = ∂Ω. The
Neumann boundary value problem refers to the following setting.{

Lu = f, in Ω,∑
i,k νiaik∂ku = g, on Γ.

(5.33)

It is obvious that the solution is not in H1
0 (Ω) in general. In fact, if u is

a solution, so is u + C with C a constant. The suitable function space is
H1(Ω).

Ellipticity in H1(Ω) requires aik ≥ α ≥ 0 and a0 ≥ α in Ω. Conse-
quently, we see ∀v ∈ H1(Ω),

a(v, v) =

∫
Ω

[∑
aik∂iu∂kv + a0v

2
]
dx ≥ α|v|21 + α ∥ v ∥2= α ∥ v ∥21 .

(5.34)
Using a certain trace theorem, it may be proved that< l, v >=

∫
Ω fvdx+∫

Γ gvds defines a bounded linear functional with f, g ∈ L2(Γ). Again, the
boundary value problem may be transformed to a variational problem.

Theorem 5.4. Suppose that Ω is a bounded domain with piecewise smooth
boundary, and satisfying the cone condition, then the variational problem

1

2
a(v, v)− (f, v)0,Ω − (g, v)0,Γ → min! (5.35)

has a unique solution u ∈ H1(Ω). Moreover,u ∈ C2(Ω) ∩ C1(Ω̄) if classical
solution exists for {

Lu = f, in Ω,∑
i,k γiaik∂ku = g, on Γ.

(5.36)

As an example, the Poisson equation{
−∆u = f, in Ω,
∂u
∂γ = g, on Γ,

(5.37)

admits a unique solution up to a constant. If we restrict the solution to
V = {v ∈ H1(Ω),

∫
Ω vdx = 0}, then uniqueness is obtained. In fact, the

Poincare-Friedrichs inequality implies that a(u, v) =
∫
Ω∇u ·∇vdx is elliptic

in V . We remark that a compatibility condition is required due to the Gauss
theorem, namely,

∫
Ω fdx+

∫
Γ gds = 0.

We may also consider a mixed boundary value problem.
−∆u = 0, in Ω,
u = g, onΓD,
∂u
∂γ = 0, on ΓN .

(5.38)

The suitable function space is then W̄ with W = {u ∈ C∞(Ω) ∩
H1(Ω), u vanishes in a hold of ΓD}, which is between H1

0 (Ω) and H
1(Ω).



100 CHAPTER 5. FINITE ELEMENT METHOD

5.4 The Ritz-Galerkin Method

In the previous sections, we relate the weak solution in function space H of
a boundary value problem with the minimization of a functional J over H.
A natural idea for approximation by the minimization of J over a subspace
Sh, called a finite element space. Here h is a characteristic length scale of
the grid size. This gives the Ritz method.

Consider

J(v) =
1

2
a(v, v)− < l, v >→ min

Sh

!. (5.39)

It is easy to know that the solution uh satisfies

a(uh, v) =< l, v >, ∀v ∈ Sh. (5.40)

Now let {ϕ1, · · · , ϕN} be a basis of Sh. We find that

a(un, ϕi) =< l, ϕi >, i = 1, · · · , N. (5.41)

If we expand the numerical solution also in terms of the basis uh =
∑

k zkϕk,
we find that ∑

k

a(ϕk, ϕi)zk =< l, ϕi > . (5.42)

This forms an algebraic system

Az = b, (5.43)

where the stiffness matrix is A = a(ϕk, ϕi) and the source term is bi =<
l, ϕi >.
Because a is elliptic, A is positive definite and therefore the above system
has a unique solution.

z
′
Az =

∑
i,k

ziAikzk

= a(
∑

zkϕk,
∑

ziϕi)

= a(uh, uh)

≥ α ∥ uh ∥2m .

(5.44)

We remark that the boundary value determines which function space
V to use. The functional is required to be V -elliptic, that is,

a(v, v) ≥ α ∥ v ∥2m; |a(u, v)| ≤ C ∥ u ∥m∥ v ∥m, ∀u, v ∈ V. (5.45)

There are other ways to formulate the approximation. For instance,
one may directly do the minimization and obtain

∂

∂zi
J(
∑
k

zkϕk) = 0. (5.46)
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The distinct feature of the finite element method is the systematic the-
oretical results. For instance, global stability is readily obtained as follows.
In fact, from

α ∥ uh ∥2m≤ a(uh, uh) =< l, uh >≤∥ l ∥∥ uh ∥m, (5.47)

we obtain immediately that

∥ un ∥m≤ α−1 ∥ l ∥ . (5.48)

Furthermore, the error bound is also straightforward to prove. This also
implies convergence of the finite element method.

Theorem 5.5. (Cea’s Lemma) Consider a V -elliptic bilinear form a(u, v)
over a certain function space Hm

0 (Ω) ⊂ V ⊂ Hm(Ω). Let Sh ⊂ V , then

∥ u− uh ∥m≤ C

α
inf

vh∈Sh

∥ u− vh ∥m . (5.49)

Proof. From

a(u, v) =< l, v >, ∀v ∈ V, (5.50)

we know that

a(uh, v) =< l, v >, ∀v ∈ Sh. (5.51)

This implies the Galerkin orthogonality

a(u− uh, v) = 0, ∀v ∈ Sh. (5.52)

Let vh ∈ Sh, and take v = vh − uh ∈ Sh. We find

α ∥ u− uh ∥2m ≤ a(u− uh, u− uh)

= a(u− uh, u− vh) + a (u− uh, vh − uh)︸ ︷︷ ︸
=0

≤ C ∥ u− uh ∥m∥ v − vh ∥m .

(5.53)

We conclude

∥ u− uh ∥m≤ C

α
inf

vh∈Sh

∥ u− vh ∥m . (5.54)

From the theorem, we notice that the accuracy is up to the approxi-
mation error of u in Sh. Piecewise polynomials is adopted in general for
u.
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Figure 5.1: Schematic view of triangulation.

5.5 A Simple Example

To explain better the finite element method, we work out explicitly a model
problem. Consider {

−∆u = f, in Ω = (0, 1)2,
u = 0 on ∂Ω.

(5.55)

We take the finite element space

Sh = {v ∈ C(Ω̄) : v is a linear function in every triangle, v|∂Ω = 0}. (5.56)

The basis function in this space is denoted as {ϕi}Ni=1, whereN is the number
of mesh points inside the domain, and ϕi(xj , yj) = δij at every nodal points
(xj , yj). These are tent functions. Consider a nodal point, denoted as C.
Then ϕC is nonzero in regions I, III, IV, V I, V II, V III. We refer to its
neighboring vertices as E,W,S,N,NW,SE. It is obvious that a(ϕC , ·) is
zero except for ϕ’s corresponding to these neighboring vertices.

We first compute

a(ϕC , ϕC) = 2

∫
I+III+IV

[(∂1ϕC)
2 + (∂2ϕC)

2]dxdy

= 2

∫
I+III

(∂1ϕC)
2dxdy + 2

∫
I+IV

(∂2ϕC)
2dxdy

= 2h−2

∫
I+III

dxdy + 2h−2

∫
I+IV

dxdy

= 4.

(5.57)
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Next we compute

a(ϕC , ϕN ) =

∫
I+IV

∇ϕC · ∇ϕNdxdy

=

∫
I+IV

∂yϕC∂yϕNdxdy

=

∫
I+IV

(−h−1)h−1dxdy

= −1.

(5.58)

Here we have used the fact that ∇ϕC = (−h−1,−h−1) in I, and ∇ϕC =
(0,−h−1) in IV ; and ∇ϕN = (0, h−1) in I, and ∇ϕC = (h−1, h−1) in IV .

By symmetry, a(ϕC , ϕα) = −1 for α = S,E,W .

Similarly, we may compute

a(ϕC , ϕNW ) =

∫
III+IV

[∂xϕC∂xϕNW + ∂yϕC∂yϕNW ]dxdy = 0. (5.59)

In summary, the stiffness matrix locally reads

 −1
−1 4 −1

−1

. This is
the same as central difference scheme.

5.6 Basic Settings

In two space dimensions, the basic settings for a finite element approximation
include the following issues.

A partition refers to splitting Ω into subdomains, each subdomain called
as an element. An element may either a triangle or a quadrilateral. Oth-
er polygons are also used in certain special applications. The partition is
regular if all elements are congruent.

We call T = {T1, · · · , Tm} an admissible partition if the following prop-
erties hold.

• Ω̄ = ∪M
i=1Ti

• If Ti ∩ Tj = {A}, then the point A is a common vertex of Ti and Tj .

• If i ̸= j, Ti ∩ Tj consists of more than one point, then Ti ∩ Tj is a
common edge.

We some times write the partition as Th, if every element has diameter
no greater than 2h.

We call a partition Th K-uniform, if ∃K > 0, such that ∀T ∈ Th, T
contains a circle of radium ρT ≥ h/K.
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With a partition, we next set up approximations for each element. We
denote the set of polynomials whose degree is no more than t as Pt =
{u(x, y) =

∑
i+k≤tCikx

iyk}. When a polynomial approximation is restricted
on an edge, it reduces to one variable only, and usually the degree decreases
to no greater than t− 1.

By piecing the local polynomials together to form an approximation,
there arises naturally a consideration about the regularity (smoothness) for
the approximation in the whole domain Ω. In fact, we call a finite element
approximation a Ck element, if the approximate functions are in Ck(Ω).
While the appropriate function space for the elliptic partial differential e-
quation is the Hilbert space, the following theorem provides a sharp relation
between the differentiability and the Hilbert space.

Theorem 5.6. Over a bounded domain Ω, a piecewise infinitely differen-
tiable function v : Ω̄ → R belongs to Hk(Ω) if and only if v ∈ Ck−1(Ω̄) for
k ≥ 1.

As an example, if we want to solve a problem in the space H1(Ω), it
is enough to form a finite approximation with C0(Ω̄) element. Similarly, if
we want to solve in Hm(Ω), continuity on the order of (m − 1) should be
enforced across the edges.

Finally, we remark that as the finite element approximation space Sh ⊂
V , we call this a conformal element.

5.7 Triangular Elements With Complete
Polynomials

For a triangle element, we may define a reference triangle T with vertices at
(0, 0), (1, 0) and (0, 1). Then with an affine linear transformation(

x̃
ỹ

)
= A

(
x
y

)
+

(
x̃0
ỹ0

)
, det(A) ̸= 0, (5.60)

a polynomial p(x, y) over the reference triangle leads to another polynomi-
al p̃(x̃, ỹ), which is of the same order. Therefore, we shall solely discuss
approximations on the reference triangle.

For t ≥ 0, suppose that s = (t+1)(t+2)/2 points z1, · · · , zs in T lying
on (t + 1) lines. Then ∀f ∈ C(T ), there exists a unique polynomial p with
degree no greater than t, such that p(zi) = f(zi). This is obvious for t = 0.
Assume the statement holds for t − 1. Then for t, consider the edge along
the x axis. There is a polynomial p0(x), such that f(zi) = p0(x(zi)) holds
for the (t + 1) points on this axis. Using the assumption for (t − 1), we
may find a function q(x, y) to handle the rest points. Then we construct
p(x, y) = p0(x) + yq(x, y), which solves the problem for t.
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This leads to the construction of some nodal bases, which refers to
{ψi}si=1 satisfying ψi(zj) = δi,j . For this choice, a set of points z1, · · · , zs
uniquely determine a function in Sh.

Now we construct some C0-elements on Ω with polynomials on the
degree of t ≥ 1.

After making triangulation, we select for each triangle T s = (t+1)(t+
2)/2 points and form a polynomial p(x, y) of the degree t. When restricted
on an edge, the polynomial reduces to a single variable polynomial with
degree no greater than t. It is uniquely determined by (t + 1) points at
this edge. Consider an adjacent triangle T̃ . The polynomial on T̃ is also
determined by the same (t+1) points at this common edge when restricted
to the edge. As the single variable polynomial uniquely determined by the
(t + 1) points at edge, these two single variable polynomials must be the
same. We conclude that the approximation is C0 across edges.

We describe several C0 triangle elements as follows.
First, a conforming P1 element (Courant element) M1

0. Over the refer-
ence triangle, we define

ψ1|T = 1− (x+ y), ψ2|T = x, ψ3|T = y. (5.61)

The resulted approximation function space Πref = P1, with dimΠref = 3.
In general, ∀ϕ|T ∈ P1, we may expand

ϕ = ϕ1ψ1 + ϕ2ψ2 + ϕ3ψ3, (5.62)

where ϕ1 = ϕ(0, 0), ϕ2 = ϕ(1, 0), and ϕ3 = ϕ(0, 1).
Next, we construct a quadratic triangle element M2

0 by defining

ψ1 = (1− (x+ y))(1− 2(x+ y)), (5.63)

ψ2 = 4x(1− (x+ y)), (5.64)

ψ3 = 2x(x− 1

2
), (5.65)

ψ4 = 4y(1− (x+ y)), (5.66)

ψ5 = 4xy, (5.67)

ψ6 = 2y(y − 1

2
). (5.68)

These basis functions are constructed by selecting a particular point, and
drawing two lines to cover the rest points. For this element, we have Πref =
P2, dimΠref = 6.

We illustrate C1 element by an example of the Argyris element. We
take a fifth degree polynomial on the reference triangle. The number of
coefficients is then 6 × 7/2 = 21. For a function ϕ to be approximated, we
take its values and derivatives at the three vertices up to the second order,
namely, ϕ, ϕx, ϕy, ϕxx, ϕyy, ϕxy. We further take the normal derivative at
each edge center. Altogether, we have 6× 3 + 3 = 21 conditions.
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We demonstrate that the Argyris is C1. As a matter of fact, consider
along a common edge y = 0. The polynomials restricted to this edge is
a single variable one of order 5, which requires six coefficients to fix. In
fact, these six coefficients for x5, x4, x3, x2, x, 1 are determined uniquely by
ϕ, ϕx, ϕxx at the two vertices. Therefore, the element is C0. Accordingly,
the x-derivative is continuous across the edge y = 0.

Next, we consider the normal derivative ϕy at y = 0. The normal
derivative is a single variable polynomial of the order 4. There are five
coefficients to be determined for x4, x3, x2, x, 1. This is determined uniquely
by ϕy, ϕxy at the two vertices, plus the normal derivative on this edge. This
ends the proof for C1 continuity.

Finally, we also mention a bilinear quadrilateral element (Q1-element).
Over a reference cube [0, 1]× [0, 1], the approximation is defined as ϕ(x, y) =
a+bx+cy+dxy. This may be uniquely determined by ϕ at the four vertices.
We notice that Πref ⊂ P2, dimΠref = 4, and this gives C0-element.

5.8 Finite Element and Affine Families

Definition 5.2. A finite element is a triple (T,Π,Σ):

• T is a polygon in Rd;

• Π is a subspace of C(T ) with finite dimension s;

• Σ is a set of s linearly independent functions in Π, such that ∀p ∈ Πis
uniquely defined by the generalized interpolation condition, namely by
fixing the values of s functionals in Σ.

A few more notions are as follows. Each part of ∂T is called as a faces.
The basis of Π are formed by shape functions. The number s is called as
the local degree of freedom, or the local dimension.

Definition 5.3. A family of finite element spaces Sh for partition Th of Ω ⊂
Rd is called as an affine family provided that ∃ a finite element (Tref ,Πref ,Σ),
such that ∀Tj ∈ Th, there exists an affine mapping Fj : Tref → Tj, such that
∀v ∈ Sh, it holds that

v(x)|Tj = p(F−1
j x), p ∈ πref . (5.69)

As an example, Mk
0 is an affine family. On the other hand, an element

with normal derivatives is not an affine family, e.g., the Argyris element.

5.9 Approximation Properties

As mentioned before, the Cea’s lemma asserts that ∥ u− uh ∥m≤ C
α inf

vh∈Sh

∥

u − vh ∥m,Hm
0 ⊂ V ⊂ Hm(Ω). This means, the convergence follows from

the approximation property of the finite element method.
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Because C0 ̸⊂ Hm(Ω) form > 1, this does apply to C0 elements when a
high order estimate is aimed at. To this end, we shall define mesh dependent
norms, and confine ourselves to affine families.

First, for a partition Th = {T1, · · · , TM} and m ≥ 1, we define

∥ v ∥m,h≡
√ ∑

Tj∈Th

∥ v ∥2m,Tj
. (5.70)

Theorem 5.7. (Bramble-Hilbert lemma) Let Ω ∈ R2, with Lipschitz con-
tinuous boundary, and t ≥ 2. Assume that L is a bounded linear mapping
from Ht(Ω) to a normed linear space Y . If Pt−1 ⊂ KerL, then ∃C = C(Ω) ∥
L ∥≥ 0, it holds that

∥ Lv ∥≤ C|v|t, ∀v ∈ Ht(Ω) (5.71)

Using the Bramble-Hilbert lemma, we consider C0 triangle elements
with complete polynomials Pt−1 (t ≥ 2). We take the associated affine
family Sh = Mt−1

0 (Th) for a shape regular triangulation Th, and define an
interpolation Ih : Ht(Ω) → Sh. It may be prove that ∃C = C(Ω, k, t), such
that

∥ ϕ− Ihϕ ∥m,h≤ cht−m|ϕ|t,Ω,∀ϕ ∈ Ht(Ω), 0 ≤ m ≤ t (5.72)

This tells us that the convergent rate is (t−m) if ϕ has a regularity up
to t-th order.

∥ ϕ− Ihϕ ∥m,h≤ Cht−m|ϕ|t,Ω ≤ Cht−m ∥ ϕ ∥t,Ω, m ≤ t. (5.73)

Furthermore, there is an inverse estimate for an affine family with K
uniform partition. Let Sh be an affine family of FE’s consisting of piecewise
polynomials of degree s, then ∃c = c(K, s, t), such that ∀0 ≤ m ≤ t, it holds
that

∥ vh ∥t,h≤ Chm−t ∥ vh ∥m,h, ∀vh ∈ Sh. (5.74)

The inverse estimate shows that the approximation estimate is optimal.
We list the possible values of t for some elements as follows.

element linear triangle quadratic cubic bilinear Argyris

t 2 2,3 2,3,4 2 3,4,5,6

5.10 Error Bounds

Definition 5.4. Consider a V -elliptic bilinear form a(·, ·) withm ≥ 1, Hm
0 (Ω) ⊂

V ⊂ Hm(Ω). The bilinear form is called Hs-regular if ∃C = C(Ω, a, s),
such that ∀f ∈ Hs−2m(Ω), the solution u ∈ Hs(Ω) exists for equation
a(u, v) = (f, v)0, ∀v ∈ V with

∥ u ∥s≤ c ∥ f ∥s−2m . (5.75)
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It may be shown that forH1
0 -elliptic linear form with sufficiently smooth

coefficient functions, if further Ω is convex, then the Dirichlet problem isH2-
regular. Moreover, if Ω has a Cs boundary with s ≥ 2, then the Dirichlet
problem is H1-regular. We remark that the Neumann problem is more
complicated.

Theorem 5.8. Let Th be a family of shape-regular triangulation of a convex
polygonal domain Ω, then uh ∈ Sh = Mk

0, (k ≥ 1) satisfies

∥ u− uh ∥1≤ Ch ∥ u ∥2≤ Ch ∥ f ∥0 . (5.76)

Proof. Because Ω is convex, therefore the problem isH2 regular. This mean-
s, ∥ u ∥2≤ C1 ∥ f ∥0. Using the approximation property, we find that
vh = Ihu ∈ Sh satisfies

∥ u− vh ∥1,Ω=∥ u− vh ∥1,h≤ Ch ∥ u ∥2,Ω . (5.77)

By the Cea’s lemma and the regularity, we derive

∥ u− uh ∥1≤ Ch ∥ u ∥2≤ Ch ∥ f ∥0 . (5.78)

There are better estimates but we omit them.

5.11 Solving the Algebraic Equations

Finite element method usually leads to huge algebraic equations. Efficient
algorithm is crucial for the application of finite element method.

In classical iterative algorithms, for an equation Ax = b, one decompose
A =M −N and derive Mx = Nx+ b. The iterative method then reads

Mxk+1 = Nxk + b, (5.79)

or,

xk+1 = xk +M−1(b−Axk)

≡ Gxk + d.
(5.80)

Here G = I −M−1A and d =M−1b.
By the fixed point theorem, it may be shown that solution the conver-

gence requirement reads

lim
k→∞

errork = 0 ⇔ ρ(G) = max
i

|λi| < 1. (5.81)

Different decompositions then give different algorithms. In the Jacobi
method, one takes the diagonal part as D, and the off-diagonal parts as
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−L and −U , respectively. This means, A = D − L − U . Then we obtain
GJ = D−1(L+ U). Componentwise, we have

xk+1
i = a−1

ii (−
∑
i̸=j

aijx
k
j + bi). (5.82)

In the Gauss-Seidel method, we take M = D + L, and GGS = (D +
L)−1U . It is solved explicitly by

aiix
k+1
i = −

∑
j<i

aijx
k+1
j −

∑
j>i

aijx
k+1
j + bi. (5.83)

We remark that the convergence essentially requires the stiffnes matrix
diagonally dominant and irreducible.

Another category of algorithms is relaxation methods. In an over-
relaxation method, we compute

Dxk+1 = ω[Lxk+1 + Uxk + b]− (ω − 1)Dxk. (5.84)

Convergence holds for 0 < ω < 2, provided that A is symmetric and
positive definite.

There is a further category of algorithms, which fits very well the finite
element method. These are the so-called gradient methods. The algebraic
system Ax = b with A a symmetric positive definite matrix, it suffices to
minimize the function

f(x) =
1

2
x

′
Ax− b

′
x. (5.85)

The standard gradient method for a general function f(x) defined on
M ⊂ Rn starts with an initial guess x0 ∈ M . Then for k = 0, 1, 2, · · · , we
perform the following iteration.

1. Determine the direction dk = −∇f(xk).

2. Line search: find t = αk along the line {xk+ tdk : t ≥ 0}∩M to search
local minimal point xk+1 = xk + αkdk.

For the aforementioned special case of f(x) = 1
2x

′
Ax − b

′
x, we have

dk = b−Axk and αk =
d
′
kdk

d
′
kAdk

. Therefore, it holds that

f(xk+1) = f(xk + αkdk)

=
1

2
(xk + αkdk)

′
A(xk + αkdk)− b

′
(xk + αkdk)

= f(xk)−
1

2

(d
′
kdk)

2

d
′
kAdk

.

(5.86)
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Suppose the exact solution is x⋆, and define the energy norm ∥ x ∥A=√
x′Ax. For a symmetric positive definite A, we have the Kantorovitch

inequality

(x
′
Ax)(x

′
A−1x)

(x′x)2
≤ (

1

2

√
k +

1

2
k−1/2)2, k = dimA. (5.87)

From this we derive a convergence rate as follows.

∥ xk+1 − x⋆ ∥2A=∥ xk − x⋆ ∥2A [1−
(d

′
kdk)

2

d
′
kAdkd

′
kA

−1dk
] ≤ (

k − 1

k + 1
)k ∥ x0 − x⋆ ∥2A .

(5.88)

Assignments

1. Construct the cubic triangle elementM3
0 , for which Πref = P3, dimΠref =

10.

Solution:

ψ1 = (1− (x+ y))(1− 3(x+ y))(1− 3

2
(x+ y)), (5.89)

ψ2 = 9x(1− 3

2
(x+ y))(1− (x+ y)), (5.90)

ψ3 =
27

2
x(x− 1

3
)(1− (x+ y)), (5.91)

ψ4 =
9

2
x(x− 1

3
)(x− 2

3
), (5.92)

ψ5 = 9y(1− 3

2
(x+ y))(1− (x+ y)), (5.93)

ψ6 = 27xy(1− (x+ y)), (5.94)

ψ7 =
27

2
xy(x− 1

3
), (5.95)

ψ8 =
27

2
y(y − 1

3
)(1− (x+ y)), (5.96)

ψ9 =
27

2
xy(y − 1

3
), (5.97)

ψ10 =
9

2
y(y − 1

3
)(y − 2

3
). (5.98)


