The Kernel Method

For Ordinary Differential Equations with constant coefficients having the following form

$$
\begin{equation*}
y^{\prime \prime}+b y^{\prime}+c y=g(t) \tag{1}
\end{equation*}
$$

the Kernel Method is often much simpler to apply than Variation of Constants. We state it as a Theorem. (NOTE: The coefficient of $y^{\prime \prime}$ is 1.)
Theorem 1 (Kernel Method) Let $K(t)$ be the unique solution of

$$
\begin{equation*}
y^{\prime \prime}+b y^{\prime}+c y=0, \quad y(0)=0, y^{\prime}(0)=1 \tag{2}
\end{equation*}
$$

Then

$$
\phi(t)=\int_{t_{0}}^{t} K(t-s) g(s) d s
$$

is the particular solution of (1) satisfying

$$
y\left(t_{0}\right)=0, \quad y^{\prime}\left(t_{0}\right)=0
$$

Proof: Using the Lemma below,

$$
\begin{aligned}
\phi^{\prime}(t) & =K(0) g(t)+\int_{t_{0}}^{t} K^{\prime}(t-s) g(s) d s \\
\phi^{\prime \prime}(t) & =K^{\prime}(0) g(t)+\int_{t_{0}}^{t} K^{\prime \prime}(t-s) g(s) d s
\end{aligned}
$$

Using (2),

$$
\phi^{\prime \prime}(t)+b \phi^{\prime}(t)+c \phi(t)=g(t)+\int_{t_{0}}^{t}\left[K^{\prime \prime}(t-s)+b K^{\prime}(t-s)+c K(t-s)\right] g(s) d s=g(t)
$$

Finally,

$$
\phi\left(t_{0}\right)=\int_{t_{0}}^{t_{0}} K(t-s) g(s) d s=0 \quad \text { and } \quad \phi^{\prime}\left(t_{0}\right)=\int_{t_{0}}^{t_{0}} K^{\prime}(t-s) g(s) d s=0
$$

Example: Find a particular solution of

$$
\begin{equation*}
y^{\prime \prime}+y=\sec t \tan t \tag{3}
\end{equation*}
$$

Solution: Any solution of $y^{\prime \prime}+y=0$ has the form

$$
y(t)=A \cos t+B \sin t
$$

Imposing the initial conditions in (2), we get $A=0$ and $B=1$. Thus $K(t)=\sin t$ and

$$
\begin{aligned}
\phi(t) & =\int_{0}^{t} \sin (t-s) \sec s \tan s d s \\
& =\int_{0}^{t}[\sin t \cos s-\cos t \sin s] \frac{1}{\cos s} \frac{\sin s}{\cos s} d s \\
& =\sin t \int_{0}^{t} \tan s d s-\cos t \int_{0}^{t} \tan ^{2} s d s \\
& =\sin t \log (|\sec t|)-\cos t(\tan t-t)
\end{aligned}
$$

is the particular solution of (3) satisfying $y(0)=y^{\prime}(0)=0$.

Lemma 1 Let

$$
F(t) \doteq \int_{a}^{t} g(t, s) d s
$$

where g and $\frac{\partial g}{\partial t}$ are continuous on $(\alpha, \beta) \times(\alpha, \beta)$ and $a, t \in(\alpha, \beta)$. Then

$$
F^{\prime}(t)=g(t, t)+\int_{a}^{t} \frac{\partial g(t, s)}{\partial t} d s
$$

