Simulation )

## Realizable Systems (Chap-22.4)

Def: LTI system H is realizable if it satisfies:

1° Stability: every bounded input produces a bounded output.

2° Causality: If teT, the output at time t only depends on the input at t'st.

Note: 1° In stable systems, bounded means  $\exists M < t \infty$ , st.  $\forall t \in T$ ,  $|X(t)| \leq M$ .

Thm: (Stability Condition)

An LTI system IH is stable its impulse response h(t) is absolutely integrable.

Thm: (Causality Condition)

An LTI system H is causal  $\iff$  its impulse response h(t) = 0,  $\forall t < 0$ .

Con-poss

Jan-pous

## Chap 15-4) Causality and Spectral Factorization (Chap. 22.4) Simulating a W.s.s. Random sequence

Note = Since Y(u,t) = G(X(u,t)) = (g\*X)(u,t) = (f(G)\*X)(u,t)Hence impulse response git), system function G(f) are both alternative definitions of an LTI operator G LTI op.

$$W(u,t) \longrightarrow LTI \longrightarrow \chi(u,t)$$
white  $(m_{w=0}; R_{w}(\tau) = \delta(\tau))$   $m_{x=0}; R_{x}(\tau)$  or  $S_{x}(f)$ 

$$(1) \text{ Find } G(f).$$

$$S_{x}(f) = S_{w}(f) |G(f)|^{2}$$

:  $G(f) = \sqrt{S_X(f)} e^{\frac{i}{2} Y(f)}$ , where Y(f) is any real fn.

(2) Final G(f) so that the system is causal, (i.e., 
$$g(t) = 0$$
 for  $t = 0$ )

$$G(f) = \sum_{\tau=-\infty}^{\infty} g(\tau) e^{-i2\tau f(\tau)}$$

$$f) = \sum_{\tau=-\infty}^{\infty} g(\tau) e^{-t\Omega f}$$

$$= \sum_{\tau=0}^{+\infty} g(\tau) e^{-t\Omega f} \tau$$

$$(\tau_z(z) \equiv \frac{t\infty}{z} g(\tau)z$$

$$( \cdot \cdot z = e^{tixf} )$$

•: 
$$S_X(f) \ge 0$$
, and • has period 1.

in Sx(f) is real with period 1.

Make Fourier series expansion of where 
$$a_n = \int_{-\frac{\pi}{2}}^{2\pi} dn \, S_x(f) \, e^{\pi i x_n f} \, df$$

and 
$$a_n = a_n^*$$

Write 
$$\ln \operatorname{Sx}(f) = \left(\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{\frac{i}{2} n f n}\right) + \left(\frac{a_0}{2} + \sum_{n=\infty}^{\infty} a_n e^{\frac{i}{2} n f n}\right)$$

define  $\eta(z) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n z^n$ ,

then  $\ln \operatorname{Sx}(f) = \ln |G(f)|^2 = \ln G(f) + \ln G(f)$ 

$$= \ln G(f) + \ln G(f)$$

$$= \ln G(f) + \left(\ln G(f)\right)^*$$
Choose  $\ln G(f) = \eta(z)$ , i.e.,  $G(f) = e^{\eta(z)}$ 

then Giff corresponds to a coursel system, applying the discrete (sector) spectral factorisation theorem (22-116).

- is convergent, and hence analytic for all z on and outside the unit circle on z-plane
- G(f) is analytic on and outside the unit circle on z-plane,
- 2- The inverse z-transform is 0 for t=0, i.e. g(t) = o for teo,
- :- GCf) corresponds to a coursal system. See discrete spectral factorization theorem (22-116) for details.

Proof detayle 6 of 17 The Fourier series expansion is possible, when \frac{1}{5} |lnSx(f)| df <∞. (discrete version of Paley-Mener)

Expansion When the filter (system) is stable,  $\sum_{t=0}^{\infty} |g(t)| < \infty$ , then ce  $\lim_{t \to 0} |g(t)| < \infty$ , then ce  $\lim_{t \to 0} |g(t)| \ge 1$  converges on and outside the Unit circle on z-plane. ( = [git)=t | converges.)

(3) Find G(f), set. the system is causal, given 
$$S_{x}(f)$$
 is rational for of  $z$ :

$$S_{x}(f) = C z^{y} \frac{\prod_{d=1}^{N} (z-u_{d})}{\prod_{d=1}^{N} (z-u_{d})},$$

where  $u_{n} \neq 0$ ,  $v_{d} \neq 0$ ,  $u_{n} \neq v_{d}$ ,  $v_{n} \neq 0$ .

She will see that  $v_{d} \neq 0$  is any root such that  $v_{d} \neq 0$  is any root of  $v_{d} \neq 0$  is any root of  $v_{d} \neq 0$ .

If it addition,  $|v_{d}| < |v_{d}| < |v_{d}|$ 

fage 16

$$S_{x}(t) = S_{x}^{x}(t)$$

$$C = \frac{\prod_{n=1}^{d} (z - u_n)}{\prod_{n=1}^{d} (z - u_n)} = C = \frac{\prod_{n=1}^{d} (z^{-1} - u_n^{*})}{\prod_{n=1}^{d} (z^{-1} - v_n^{*})}$$

$$= C' Z^{-N-N+D} \frac{\prod_{n=1}^{N} (Z - \frac{1}{N_n^*})}{\prod_{n=1}^{N} (Z - \frac{1}{N_n^*})}$$

: both sides have athe same set of noots (and poles).

$$= \{ u_n \} = \{ u_n^* \}, \{ v_a \} = \{ \frac{1}{v_a^*} \}, v = -v - N + D \}$$

$$= \{ v_a \} = \{ \frac{1}{v_a^*} \}, v = -v - N + D \}$$

- Rooks (and poles) are in conjugate reciprocal pairs,

and  $v = \frac{-N+D}{2}$ .

Suppose use of  $S_x(f)$  on unit circle write  $S_{x}(f) = (z - e^{traf_{i}})^{d} k(z)$ , where k(eterfi) to.

then  $S_X(f_i+elf) = e^{tenf_i \alpha} (\bullet e^{tendf} - 1)^{\alpha} k (e^{tenf_i+df})$ 

$$\approx e^{i z n f_i \alpha} k (e^{i z n f_i t d f_i}) (i z n d f_i)^{\alpha}$$

 $\sim$  2 is even.

== Sx (f) ≥0

: Roots on unit circle in z-plane have meren order.

Similarly, since  $(S_{\times}(f))^{-1} \ge 0$ , poles on unit circle in z-plane also have even order.



Suppose 
$$V_1 = e^{\frac{i2\pi f}{2}}$$
 is a pole of  $S_{x}(f)$  on unit circle.

write  $S_{x}(f) = \frac{1}{(z - e^{\frac{i2\pi f}{2}})^{\frac{1}{2}}} K(z)$ 

where  $K(e^{\frac{i2\pi f}{2}}) < \infty$ ,  $d$  is even. (From (2))

then  $f_1 + \varepsilon$ 
 $f_1 - \varepsilon$ 
 $e^{\frac{i2\pi f}{2}} (e^{\frac{i2\pi f}{2}} - 1)^{\frac{1}{2}} df$ 
 $\Rightarrow \infty$ ,

it contradicts with  $R_{x}(0) = \int_{-\infty}^{\infty} S_{x}(f) df < \infty$ .

There's no pole on unit circle.

Note:

I  $H(f) = \frac{1}{G(f)}$  corresponds to a causal system, s.t. W = HX

Rondom Waveform Simulating a w-s.s.

$$\begin{array}{c|c} W(u,t) & \longrightarrow & LTI \\ H(f) & \longrightarrow & X(u,t) \\ M_{w}=0 & & \\ S_{w}(f) & & \\ \end{array}$$

There's no Dirac delta for in Sx(f).

(1) Final (1), s.t. the system is causal, given Sx(f) is rational for of  $S_{X}(f) = C \frac{\prod_{n=1}^{N} (f - a_{n})}{\prod_{n=1}^{N} (f - b_{n})} \qquad (f \in \mathbb{R})$ 

= Sx(f) @ real ⇒ roots/poles occur in conjugate pairs.

>> real roots have even order

 $\int_{-\infty}^{+\infty} S_{x}(f) df < \infty \Rightarrow \text{not real poles}.$ 

 $S_{\chi}(f) = C \cdot \left( \frac{1}{\prod_{i=1}^{N} (f-a_n)} \cdot \left( \frac{1}{\prod_{i=1}^{N} (f-a_n^*)} \cdot \frac{1}{\prod_{i=1}^{N$ 

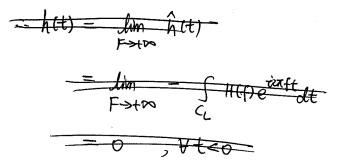
where Imfany  $\geq 0$  for  $n=1,\dots, \stackrel{\vee}{\geq}$ ,

Inful >0 for d=1, --, }

Choose  $H(f) = \sqrt{c} \frac{\frac{2}{1}(f-an)}{\frac{2}{1}(f-b_d)}$  (fer), so that  $S_x(f) = |H(f)|^2$ . (fer).

Assume All the poles of H(f) are in the upper-half plane,  $\frac{D-N}{2} \ge 1$  Using inversion of Fourier transform by responds H(f) corresponds to a causal system.

See continuous rational spectral factorization thm (22.136) for details



Note: For too, using similar technique, h(t) can be expressed

by residues. (BEX). (Motes to be completed.)

If X(urt) is a real orp., poles/zeros of Sxf) are symmetric about Imiff and Relfs.

However, the symmetries of Sx(f) doesn't imply X(u,t) to be read 3° White noise W(u,t) is not w.s.s., because

$$R_{W}(0) = \int_{-\infty}^{+\infty} S_{W}(f) df = \int_{-\infty}^{+\infty} 1 \cdot df \longrightarrow +\infty$$

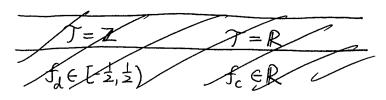
We can approximate the white noise wir. It. H(f) with a w-ss. r.p., so the mathematical convergence still holds.

4° We don't use z-plane here.

lo For proof, together with the inversion of Fourier transform by residues, we only need to note that

$$|H(f)| = |H(Re^{i\theta})| \sim R^{\frac{N-p}{2}} \leq R^{-1} \text{ when } R \gg 1$$

(2) Find H(f), s.t. the system is causal.



T=Z,  $f_{d} \in [-\frac{1}{2}, \frac{1}{2})$  T=R,  $f_{c} \in R$   $f_{d} = \frac{1}{2} \operatorname{andom}_{f_{c}} f_{c}$   $f_{d} = \frac{1}{2} \operatorname{andom}_{f_{c}} f_{c}$ 

 $S_{x,d}(f_d) = S_x(tom(\pi f_d))$ 

get  $H_d(f_d)$  from discrete  $f_c = tantifia)H(f_c) = H_d(\frac{1}{\pi}arctan f_c)$ spectral factorization thm

Note: For Fourier series to exist, we have  $\int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \ln S_{x,d}(f_d) \right| df_d < +\infty$ 

That is,  $\int_{-\infty}^{+\infty} \frac{\left| \ln S_{x}(f_{c}) \right|}{\pi \left( 1 + f_{c}^{2} \right)} df_{c} < +\infty$ 

It's called Paley-Wiener Criterion.