$\therefore \quad[5 y s t e m]$
Linear Time Invariant (LTI) Operators (Chap.22.1)
\mathcal{L} is a linear space over \mathbb{C},
elements. \tilde{x} are complex-valued fins defied on \mathcal{T},
H denotes a linear operator on $\mathcal{L}=\tilde{y}=H \hat{x},(\tilde{x}, \tilde{y} \in \mathcal{Z})$
Def: Translation operator (shift operator) \mathbb{I}_{τ} is a linear operator shifting a f_{n} on its domain,

$$
\mathbb{T}_{\tau} \tilde{x}=\tilde{x}(t \oplus \tau)
$$

where τ is closed under addition \oplus.
Examples:

\mathcal{T}	\mathcal{L}	\oplus
$\mathbb{Z}_{n} \equiv\{0,1 \cdots, \cdots-1\}$	\mathbb{C}^{n}	addition modulo n

\mathbb{Z}
Z
integer addition
$\mathbb{R}_{T} \equiv[0, T) \quad \mathcal{L}_{0}^{2}[0, T) \quad$ addition modulo T
$\mathbb{R} \quad \mathcal{L}^{2}(\mathbb{R})$
adelition in the real numbers

Ref: Linear time invariant (LTI) operator is a linear operator H that commutes with amy translation operator. on T,

$$
\mathbb{I}_{\tau} \mathbb{H}=\mathbb{H} \mathbb{I}_{\tau}, \forall \tau \in 丁
$$

Thu : When $J=\mathbb{Z}_{n}$, a LTT operator $H \not \leftrightarrows$ a circulant matrix H.
proof: when $\mathcal{T}=\mathbb{Z}_{n}, \mathcal{L}=C^{n}$.
Linear operators are matrices on $\mathbb{C}^{n \times n}$.
Let $H \in \mathbf{C}^{n \times n}$, then
H is time-emariant

$$
\begin{equation*}
\Leftrightarrow \forall \tau \in \mathbb{Z} \tag{*}
\end{equation*}
$$

where T_{τ} is translation operator: $T_{\tau} \hat{x}(t)=x(t \boxplus \tau)$ and \oplus is addition modulo n.

$$
\begin{aligned}
& \because\left(T_{\tau}\right)_{i \sigma} x_{j}=x_{i \oplus \tau} \\
& \therefore\left(T_{\tau}\right)_{i j}=\delta_{(i \oplus \tau) j} \\
& \therefore(*) \Leftrightarrow \forall \tau \in \mathbb{Z} \\
& \Leftrightarrow\left(T_{\tau}\right)_{i k} H_{k j}=H_{i l}\left(T_{\tau}\right)_{l j} \\
& \Leftrightarrow \quad \forall \tau \in \mathbb{Z} \\
& \delta_{(i \theta \tau) k} H_{k j}=H_{i l}\left(T_{\tau}\right)_{(x \theta \pi / j} \\
& \Leftrightarrow \quad \forall \tau \in \mathbb{Z} \\
& H_{(i \theta \tau) j}=H_{i(j \theta \tau)} \\
& \Leftrightarrow \quad \forall \tau \in \mathbb{Z}, \quad H_{\text {obj }}=H_{(T \forall R) G \mathcal{G} \otimes \tau)}
\end{aligned}
$$

ie. H only depends on io, ie. H is circulant.

Circulant Matrix

Circulant matrix C is a $n \times n$ matrix, with entries only depend on $i \theta_{j}$, ie. $(i-j) \bmod n$.

Thu: (Complex field)
a) Circulant matrices have a same set of eigenvectors. $\left\{\tilde{e}_{f}\right\}$, with $\tilde{e}_{f}=\left[e^{i 2 \pi f t}\right], f \in \mathcal{F}=\left\{\frac{v}{n}: v \in \mathbb{Z}_{n}\right\}, t \in \boldsymbol{T}=\mathbb{Z}_{n}$, $\mathbb{Z}_{n}=\{0,1, \cdots, n-1\}$.
b) The corresponding eigen values are

$$
\begin{aligned}
& \lambda_{f}=\vec{e}_{1} \cdot c \cdot \tilde{e}_{f}=\left(c_{0}, c_{n-1}, \cdots, c_{1}\right) \tilde{e}_{f}, f \in \mathcal{F} \\
&=\tilde{e}_{f}^{*} \cdot\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)^{\top} \\
& t \text { matrices are simultaneously, dicasomalizable h }
\end{aligned}
$$

c) Creulent matrices are simultaneously, diagonal sizable by the unitary DFT matrix, U_{n}.

$$
C=U_{n}^{*} \Lambda_{c c} U_{n}=\frac{1}{n} F_{n}^{*} \Lambda_{c} F_{n}=\frac{1}{n} E_{n} \Lambda_{c} E_{n}^{*}
$$

$$
\begin{array}{ll}
\left(U_{n} U_{n}^{*}=I\right) \cdot & U_{n}=\frac{1}{\sqrt{n}} F_{n}, F_{n}=E_{n}^{*}=\left[e^{-i \pi f t}\right], E_{n}=\left[\tilde{e}_{f}\right] \\
& \Lambda_{c}=\operatorname{diae},
\end{array}
$$

$$
\Lambda_{c}=\operatorname{diag}\{ \}_{f}\{
$$

d) Circulent matrices ${ }^{\text {for }}$ commutative algebra:
$\forall A B$ circulent, $1^{\circ} A+B$ cirrulant $2^{\circ} A B$ circulant $3^{\circ} A B=B A$
e) circulant matrices form an n-dimensional vector space.

$$
C=C_{0} I+C_{1} P+\cdots+C_{n-1} P^{n-1}
$$

where $P=\left(\begin{array}{cc}0 & 1 \\ I_{n-1} & 1\end{array}\right)$ is the "cyclic permutation" matrix.

Def:
linear ave fris \tilde{e},
$H \tilde{e}=\lambda \tilde{e}$, while may not have $\tilde{e} \in \mathcal{L}$.
Ton : (a) The complex exponential functions

$$
\tilde{e}_{f}(t) \equiv e^{i 2 \pi f t}, f \in \mathcal{F}, t \in \mathcal{J}
$$

are e-functions of shift operator $\mathbb{I}_{\tau}(\tau \in \tau)$, with index set f given as:

τ	\mathcal{L}		
\mathbb{Z}_{n}	$\left\{\frac{\nu}{n}: \nu \in \mathbb{Z}_{n}\right\}$	$\tilde{e}_{f} \in \mathcal{L}$	$\tilde{e}_{f} \in \mathbb{C}^{n}$

proof: Case 1: $\tau=\mathbb{R}$

$$
\begin{aligned}
& \mathbb{I}_{\tau} \tilde{\mathscr{C}}_{f}=e^{i 2 \pi f(t+\tau)}=e^{i 2 \pi f \tau} \tilde{e}_{f} \\
& 2: \tau=\pi .
\end{aligned}
$$

Case 2: $\tau=\mathbb{Z}_{n}$

$$
\begin{aligned}
\boldsymbol{I}_{\tau} \tilde{e}_{f} & =e^{i 2 \pi f(t \oplus \tau)} \\
& =e^{i 2 \pi f b} \quad\left(t+\tau=a n+b, b \in \mathbb{Z}_{n}, a \in\{0,1\}\right) \\
& =e^{i 2 \pi f(\tau-a n)} \tilde{e}_{f} \\
& =e^{i 2 \pi f} \widetilde{e}_{f}, \text { when } e^{-i 2 \pi f n}=1 \text { for } f \in \mathcal{F} .
\end{aligned}
$$

Given $F=\left\{\frac{\nu}{n}: v \in \mathbb{Z}_{h}\right\}$, the equation is true.

Case 3: $\quad \tau=2$

$$
\begin{aligned}
\mathbb{I}_{\tau} \tilde{e}_{f} & =e^{i 2 \pi f(t+\tau)} \\
& =e^{i 2 \pi f a \tau} \tilde{e}_{f}
\end{aligned}
$$

If $e^{i 2 \pi f_{1} \tau}=e^{i 2 \pi f_{2} \tau}$, then $\left(f_{1}-f_{2}\right)$ is an integer multiple of $\frac{1}{\tau}$.

$$
\therefore F=\left[-\left|\frac{1}{2 \tau}\right|,\left|\frac{1}{2 \pi}\right|\right), \tau \in \mathbb{Z} .
$$

case 4: $\quad \tau=\mathbb{R}_{\top}$

$$
\begin{aligned}
\mathbb{I}_{\tau} \tilde{e}_{f} & =e^{i 2 \pi f(t \boxplus \tau)} \\
& =e^{i 2 \pi f b} \quad\left(t+\tau=a T+b, b \in \mathbb{R}_{T}, a \in\{0,1\}\right) \\
& =e^{-i 2 \pi f a T} e^{i 2 \pi f \tau} \tilde{e}_{f} \\
& =e^{i 2 \pi f \tau} \tilde{e}_{f} \quad \text { when } e^{-i \pi x f T}=1 \\
\text { Given } \mathcal{F} & =\left\{\frac{\nu}{T}: \nu \in \mathbb{Z}\right\}, \text { the equation is satisfied. }
\end{aligned}
$$

The: $:(b)$--functions of shift operator I_{τ} ane e-functions of LTI operators.
proof: $I_{\tau} H \widetilde{H}=\mathbb{H} I_{\tau} \widetilde{e_{f}}$

$$
\begin{aligned}
& =H e^{i \pi f \tau} \tilde{e}_{f} \\
& =e^{i \pi \pi f \tau} H \tilde{e}_{f} \\
\therefore\left(H \tilde{e}_{f}\right)(t \oplus \tau) & =e^{i 2 \pi f \tau}\left(\mathbb{H} \tilde{e}_{f}\right)(t) \\
\therefore\left(H \tilde{e}_{f}\right)(\tau) & =e^{i \pi \pi f \tau}\left(\mathbb{H} \tilde{e}_{f}\right)(0) \\
\therefore \quad H \tilde{e}_{f} & =H(f) \tilde{e}_{f} \\
\text { where } H(f) & \left.=(H) \hat{e}_{f}\right)(0) .
\end{aligned}
$$

$e-f u n c t i o n s ~ a n d ~ D F T ~$
Def: $\quad \tilde{e}_{f} \equiv\left[e^{i \tau \pi f t}\right]$

$$
\begin{aligned}
& f \in \mathcal{F}=\left\{\frac{v}{n}: v \in \mathbb{Z}_{n}\right\}, \quad t \in \mathcal{T}=\mathbb{Z}_{n} \\
& \mathbb{Z}_{n}=\{0, \cdots, n-1\} .
\end{aligned}
$$

The: a) e-functions are orthogonal.

$$
\tilde{e}_{f} \cdot \widetilde{e}_{g}^{*}=0 \text {, if } f \neq g
$$

b) $\left|\hat{e}_{f}\right|=\sqrt{n}$.

Def $=E_{n} \equiv\left[\tilde{e}_{f}\right], f \in F$
Thu: a) $E_{n} E_{n}^{*}=n I$;
b) $E_{n}=E_{n}^{\top}$;
c) E_{n} is a Vambermonde matrix

Def = DFT matrix. is $F_{n} \equiv E_{n}^{*}=\left[e^{-i 2 \pi f t}\right]$

Characterizing LTI Transformations

10 impulse input

$$
\delta(t) \longrightarrow \begin{aligned}
& \text { LII } \\
& G
\end{aligned} \longrightarrow g(t)
$$

$g(t)$: impulse response
Note: $\delta(t)$ is kronecke Delta fl for discrete time, and Dirac Delta fr. for continuous time.
2° arbitrary input

$$
\left.\begin{array}{rl}
y(t) & =(g * x)(t) \Longrightarrow Y(f)=G(f) X(f) \\
\because x(t)=(\delta * x)(t) \\
\because y(t) & =G x(t)=[G(\delta * x)](t)=(g * x)(t)
\end{array}\right)
$$

$3^{\circ} e$-function input

$$
\begin{aligned}
& \tilde{e}_{f}(t) \rightarrow \underset{G}{L T I} \rightarrow G(f) \tilde{e}_{f}(t) \\
& G(f) \equiv \mathcal{F}\{g(t)\} \quad G(f)=\text { system function } \\
& \left(\because G(f) \tilde{e}_{f}(t)=\left(g * \tilde{e}_{f}\right)(t)=\mathscr{F}\{g(t)\} \tilde{e}_{f}(t)\right)
\end{aligned}
$$

Note: System function is the e-value of the corresponding LTI system.

Note: 1^{0} Since $y(t)=(g * x)(t), \quad Y(f)=G(f) X(f)$, impulse response $g(t)$ and system function $G(f)$ both completely characterize an LTI system G, apart from specifying the relation:

$$
y(t)=G X(t) .
$$

