For any r.v. X with finite expectation and any convex function $\varphi(\cdot)$,
$$\mathbb{E} \varphi(X) \geq \varphi( \mathbb{E} X )$$
Note:
Corollary 1: Arithmetic-geometric Mean Inequality
If $p_1, \cdots, p_n \geq 0$ and $p_1 + \cdots + p_n = 1$, then
$$\sum_{i=1}^n p_i a_i \geq \prod_{i=1}^n a_i^{p_i}$$
A special case of arithmetic-geometric mean inequality is Young's inequality:
$$x,y \geq 0, p,q>0, \frac{1}{p} + \frac{1}{q} = 1 \Rightarrow xy \leq \frac{x^p}{p} + \frac{y^q}{q}$$
Corollary 2: Likelihood Inequality
If $X \sim p(x)$ and $q(x)$ is another density function, then
$$\mathbb{E} \log p(X) \geq \mathbb{E} \log q(X) )$$
Equality holds iff $p(x) = q(x)$.
For all $X, g(\cdot), h(\cdot)$ s.t. $\mathbb{E} g(X), \mathbb{E} h(X), \mathbb{E} g(X)h(X)$ exist:
If $p,q>0, \frac{1}{p} + \frac{1}{q} = 1$, then for all r.v. X and Y, given the expectations exist,
$$\lvert \mathbb{E} XY \rvert \leq \left( \mathbb{E} \lvert X \rvert^p \right)^{\frac{1}{p}} \left( \mathbb{E} \lvert Y \rvert^q \right)^{\frac{1}{q}}$$
Derivation: Using Young's inequality, $\frac{ \lvert X \rvert }{ \left( \mathbb{E} \lvert X \rvert^p \right)^{\frac{1}{p}} } \frac{ \lvert Y \rvert }{ \left( \mathbb{E} \lvert Y \rvert^q \right)^{\frac{1}{q}} } \leq \frac{ \lvert X \rvert^p }{ p \mathbb{E} \lvert X \rvert^p } + \frac{ \lvert Y \rvert^q }{ q \mathbb{E} \lvert Y \rvert^q }$. Holder's inequality can be derived by taking expectation on both sides.
Corollary: Cauchy-Schwarz Inequality
For all r.v. X and Y, given the expectations exist,
$$\lvert \mathbb{E} XY \rvert \leq \left( \mathbb{E} \lvert X \rvert^2 \right)^{\frac{1}{2}} \left( \mathbb{E} \lvert Y \rvert^2 \right)^{\frac{1}{2}}$$
For any positive r.v. X and $r>0$,
$$P(X \geq r) \leq \frac{\mathbb{E} X}{r}$$
Corollary:
Bernstein inequality (exponential version for bounded r.v.'s): Suppose that $|X| \le M$ almost surely, then for all $\epsilon > 0$
$$P(|\bar{X} - \mu| \ge \epsilon ) \le 2\exp \left( -\frac{n\epsilon^2/2}{\sigma^2 + M\epsilon/3} \right)$$
Concentration inequalities:
Some properties of Gamma, Chi-squared, Poisson and negative binomial distribution.